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ABSTRACT 

Searching for named entities is a common task on the web. 

Among different named entities, person names are among the 

most frequently searched terms. However, many people can share 

the same name and the current search engines are not designed to 

identify a specific entity, or a namesake. One possible solution is 

to identify a namesake through clustering webpages for different 

namesakes. In this paper, we propose a clustering algorithm which 

makes use of topic related information to improve clustering. The 

system is trained on the WePS2 dataset and tested on both the 

WePS1 and WePS2 dataset. Experimental results show that our 

system outperforms all the other systems in the WePS workshops 

using B-Cubed and Purity based measures. And the performance 

is also consistent and robust on different datasets. Most important 

of all, the algorithm is very efficient for web persons 

disambiguation because it only needs to use data already indexed 

in search engines. In other words, only local data is used as 

feature data to avoid query induced web search. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – Clustering; I.2.7 [Artificial Intelligence]: Natural 

Language Processing - Text analysis.  

General Terms 

Algorithms, Experimentation 

Keywords 

Web Person Name Disambiguation, Text Clustering 

1. INTRODUCTION 
When people search for a name, one may intend to find a specific 

entity, called the namesake associated with that name. Current 

search engines normally return a large set of documents 

containing the searched name string based on features such as hit 

ratio and hyperlinks associated with popular search interest as a 

whole in the internet rather than features to distinguish different 

namesakes.  For example, when a user submits the query 

“George Bush”, the returned documents by a search engine 

may include mentions such as (1)George W. Bush (The 

43
rd
 President of U.S. and (2)George W.H. Bush 

(The 41
st
 President of U.S.)that are contained with 

different ranks. However, the mentions of George Bush 

(Professor of Hebrew University, U.S) would be 

hard to find as they are being returned as very low ranked files 

that would normally be missed.  

Identifying a specific entity using the current search engine is time 

consuming because the scale of the returned documents must be 

large enough to ensure coverage of the different namesakes 

especially to contain all the documents with namesakes of much 

less popular persons.  

The task of identifying different namesakes through web search is 

called web persons disambiguation. Recent works on web persons 

disambiguation have been reported in the WePS workshops [1,2]. 

The reported systems used different clustering techniques to 

organize the searched results according to either closed 

information or open information to disambiguate different 

namesakes. Some systems have achieved competitive 

performance by incorporating large amount of open information 

[7] or by conducting expensive training process [14].  In this 

paper, we present a novel algorithm based on Hierarchical 

Agglomerative Clustering(HAC) [16] which makes use of topic 

information using a so called hit list to make clustering more 

suitable and effective for web persons disambiguation.    

The rest of the paper is organized as follows. Section 2 presents 

related works. Section 3 describes our algorithm design. Section 4 

gives the performance evaluation and Section 5 is the conclusion.   

2. RELATED WORKS 
Researchers have adopted different assumptions about the data for 

web persons disambiguation. A common assumption is that each 

document is associated with only one person and thus a specific 

namesake [3,4,7]. Others may select some smaller units such as 

paragraph to represent a single person [18]. 

Different systems adopted different features for similarity 

measures. The performance of a system is highly related to the 

features used. Generally speaking, feature selection can be 

classified into either local methods or global methods. The local 

methods select and assign weights to features according to the 

given collection. Among the local methods, [3] extracts features 

from the sentences that contain a co-reference of the target name 

and [15] extracts biographical information from web pages. Many 

systems in the WePS workshops use simple word tokens from the 

webpages found in the given corpus [4,7,10].  Some systems use 

more advanced features like word bigrams [7], phrases [8] or 

named entities [18]. On the other hand, global methods 
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incorporate information external to the given dataset such as 

external corpora or online information for similarity measures. 

For example, [19] searches for external snippets from Google to 

directly help in clustering. Other systems may use the external 

knowledge to tune the weightings of the different features. For 

example, [7] uses the Google 1T 5-gram data to learn frequencies 

of bigrams.  [14] uses Wikipedia to find phrases in documents.  

In addition, because webpages can be noisy, some attempts are 

made to use only relevant content blocks in webpages. [13] 

identifies useful content by using predefined templates. [14] uses 

Gradient Boosting method to learn the content weighting on 1.3 

million popular web pages and 400,000 manually annotated 

query-URL pairs. However, as the types of webpages can vary lot, 

and new pages are continuously being generated, it may be 

difficult to capture the most relevant information from the ever 

changing data types. 

In the task summary of the WePS2 workshop, [2] pointed out the 

importance of selecting the optimal threshold for clustering. The 

BEST_TOKEN system which knows all the optimal thresholds 

beforehand, achieve a very good performance with only simple 

local features. Results show that finding the optimal termination 

criteria can greatly improve the clustering quality even with only 

local data. Most prior works on clustering focus on optimization 

of cluster numbers or threshold for a clustering task. [17] 

reviewed the set of criteria for cluster number optimization. 

However, these methods are normally application dependent. The 

PDDP method used by [6] measures the non-cohesiveness of 

clusters and split the data in the weakest cohesion point. The 

Chameleon system [12] adopts a similar method that computes 

both the inter-connectivity within the cluster and the proximity 

among clusters.  These methods work well on regular clustering 

problems. However, most of them tend to avoid both singleton 

and “All-in-One” clusters, whereas in our problem, the sizes of 

the clusters can vary significantly. For web persons 

disambiguation, it is important to handle large variations of 

different cluster sizes.  

3. ALGORITHM DESIGN 

3.1 Preprocessing 
For web persons disambiguation, the data are normally obtained 

from information already stored in a search engine indexed under 

the searched name including the webpages, the related snippets 

and metadata to form a so called local corpus as supplied by 

WePS workshops. Webpages as documents normally contain a 

large amount of noise including formatting tags, executable 

scripts and Meta information. The quality of preprocessing can 

largely influence the performance of the clustering system. 

We use some simple rule-based methods for noise removal. The 

raw html pages are first parsed by the Beautiful Soup Parser1 to 

remove html tags and scripts tags. Only plain text is reserved for 

clustering. Similar to the measures in [4], for block level tags 

(such as <div>, <p>), only text blocks with more than 10 words 

are preserved. The preprocessing module also removes groups of 

text less than 4 words that are separated by bars or text grouped 

by <li> tags to eliminate the navigation links in a webpage. After 

the plaintext is produced, standard sentence segmentation, word 

tokenization and stemming are applied using the NLTK toolkit2. 

                                                                 

1 http://www.crummy.com/software/BeautifulSoup/ 

2 http://www.nltk.org/ 

Stop words, punctuations, and numbers less than 4 digits are also 

removed. 

3.2 Feature Selection 
It is easy to understand that rich features and extra knowledge 

beyond the local data collection can improve the system 

performance. However, getting external information is rather 

expensive, both on storage and computation. Such information is 

also sometimes domain specific, which is difficult to obtain in 

some cases. In practice, we also know that as long as there is 

information for a specific namesake in the local data, it is often 

sufficient for human to identify the entity. In this work, we 

explore methods to make full use of local features, and try to 

explore the full potential of locally provided information. 

Our algorithms use the standard Vector Space Model commonly 

used by many information retrieval systems. Each document is 

represented by a vector formed by 7 types of tokens extracted 

from local data as listed below:  

1. Webpage title: the title of the webpage is split to single words 

and added to the feature space.  

2. URL of webpage: they include both the host name of URL of a 

webpage and path on the server. We remove the common 

webpage extensions by a dictionary. Non-meaningful tokens 

such as pure numbers and punctuations are removed. 

3. Webpage metadata: only two kinds of metadata in a webpage, 

“keywords” and “descriptions” are used if they exist. These 

metadata are highly summarized and informative. Sometimes 

they contain information that does not appear in the webpage.  

4. Snippet: Query biased snippets returned by the Yahoo! search 

engine (included in WePS data) which normally has reference 

to the name. Snippets are highly summarized fragments of text. 

Query biased snippets summarize the query context and distant 

information relevant to the query term [21].    

5. Context Window: Tokens in a context window within the 

query name. The window size is selected based on experiments.  

6. Context Sentence: The whole sentence that contains the query 

name.  

7. Bag of Words: Commonly used feature to represent the 

document. In our system, we simply index all the words in the 

document as tokens in the feature space.  

For a token s, we use the TF.IDF weighting scheme with its 

weight calculated as: 
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) 

where tfs is term frequency of s, Nd is the total number of 

documents, and dfs is the number of documents in which s is 

present. Furthermore, we give weight factor to each type of tokens 

denoted by WF(s) because some might be more important than 

others. Thus, the final normalized weight for each token using 

cosine co-efficiency is given as: 
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3.3 Clustering Algorithm 
Our clustering algorithm is based on the common Hierarchical 

Agglomerative Clustering (HAC Algorithm) [16]. In HAC, all 

documents are treated as singleton clusters initially, and are 



referred to as “leaf clusters”. In each iteration of HAC, the two 

most similar clusters will be merged into a larger cluster. The 

centroid vectors of the two clusters will be merged to a new 

centroid vector. During the merging of clusters, there are 

generally two trends in the cluster’s centroid: 

1. A small set of keywords will be repeatedly matched, thus 

maintaining a higher weight in the cluster centroid vector. 

2. As new tokens are constantly added to the cluster centroid, 

there are some rare words to be added too with relatively low 

weight. And these low weight tokens occupy a large portion in 

the vector. 

The HAC algorithm generally works well at the beginning of the 

clustering. However, when the above two phenomena become 

more and more prominent, the performance begins to deteriorate. 

The system may mistakenly merge two large clusters together 

because of the large number of token hits as shown in Figure 1. 

Also, some newly added tokens may make the topic diverge to a 

wrong direction. In Figure 2, the set of clusters about a journalist 

may be mistakenly merged together with the cluster about 

sergeants in a war because of the match on some non-topic words. 

 

Figure 1 Merge of Clusters with low weight terms  

 

Figure 2 Topic Divergence 

3.3.1 Topic Capturing 
To solve the problem created by noise data not related to certain 

topic, we assume that most of the webpages describing the same 

namesake are likely to have similar topics. For example, 

documents about a journalist should mainly contain topics about 

news, journals and so on. Documents about a sergeant, however, 

should primarily contain topics about war and the like. Based on 

this assumption, we try to merge document clusters only if they 

share consistent and useful topics. In other words, our system 

favors merging clusters that are likely to mention the same topics. 

In order to obtain the core topic words, we created a vector called 

“Hit List” during the clustering process. This vector is maintained 

for each non-singleton cluster in addition to the centroid vector 

used in the conventional HAC.  

The Hit List of a cluster C is actually the vector containing the 

shared tokens of the two source clusters that are merged to form 

cluster C. Each token in the Hit List is associated with a weight, 

which is the product of its origin normalized weights in the two 

source clusters. The construction of a Hit List vector can be 

illustrated using the example in Table 1.  It is worth noting that 

the sum of the weights in the Hit List is the dot product of the 

centroid vector in cluster C1 and cluster C2. Because the vectors 

are already normalized, the dot product represents the cosine 

similarity of C1 and C2. So the Hit List actually records the 

contribution of each token to the formation of this new cluster C. 

Table 1 Example of Hit List construction by merging two 

clusters of the same size (number of documents in the cluster) 

C2 umass virginia research student 

Centroid Vector 0.5 0.2 0.2 0.1 

Table 1 shows that if a token gets a high weight in the Hit List, it 

should have high weights in its source clusters as well. This 

means that tokens with high weights in the Hit List are normally 

important words to documents in the cluster. Accordingly, they 

can represent the topic of the cluster. As the clustering process 

continues, the Hit List gradually grows larger. But only the topic 

words, which are likely to be repeated in many documents, will 

gain higher weights than general words. So we only keep words 

with higher weights as topic words. To maintain topic words with 

significance, we select a fixed threshold that is proportional to the 

cosine similarity threshold value used in HAC which will be 

explained in the performance evaluation section.  

3.3.2 Similarity Modification Based on Topics 
With the help of the Hit List, the similarity measure used in the 

HAC is slightly modified by a simple scheme: If two clusters that 

are not likely to be talking about the same topic, their similarity 

value will be reduced by a penalty value. We consider two cases 

for the penalty. The first one is when the Hit List of the merged 

cluster has only few words, which means that the two clusters are 

generally matched based on the large amount of low weight 

tokens. The second one is when the Hit List of the merged cluster 

has only few overlaps with the respective Hit Lists of the source 

clusters which indicate topic divergence.   

For the first case, we use the Vital Match Ratio to handle the 

problem. Given two clusters, C1 and C2 with their feature vector 

F1 and F2, and their corresponding Hit List, H1 and H2, and the 

merged cluster Hit List Hc, The Vital Match Ratio of C, denoted 

by VMRc is calculated using the formula: 

     
    (  )

    (  )      (  )
 

where card(Hc), card(C1), and card(C2) denote the respective 

cardinalities of the respective vectors.  If VMRc is less than a 

threshold, we will give penalty to the similarity by subtracting a 

penalty score Pc to be determined experimentally. 

For the second case, we use the overlapping similarities between 

H1 and Hc and between H2 and Hc  to detect the divergence of the 

clusters to consider penalty. For two vectors   and V’, let us use 

 ( )  and   ( )  to denote the weights of a term u in the 

corresponding vectors. The overlap similarity is then given as: 

           (    )   
∑ ( ( )    ( ))        

∑  ( )    ∑   (  )     
 

If one of the two to be merged clusters is a singleton cluster, 

which would not have had a Hit List associated with it, we let the 

C1 umass virginia research student 

Centroid Vector 0.5 0.1 0.4 0 

Merged  C umass virginia research student 

Centroid Vector 0.5 0.15 0.3 0.05 

Hit List 0.25 0.02 0.08 0 

Journalist 

News 

Journal 

Painter 

Art works 

Pictures 

Profile, Contact 

Report, Website 

Advertisement, 

Journalist Painter 

 
   War 

 Sergeant 

Hero, 

Country, 

Democratic 

Article 

Investigate 

Journalist Sergeant in War 

Journalist 

Newspaper 

*        Hit List for cluster 1 and cluster 2 are omitted. 

** For demonstration purpose, the centroid vector for the 

merged cluster is not normalized. 



overlap similarity equals to the overlap threshold. Then, we define 

the divergence value (DV) as the harmonic mean of the two 

values, which is given as: 

    
 

 

           (     )
 

 
           (     )

 

In particular, DV value will be 0 if either one of the overlap 

similarity is 0. If DV value is lower than a threshold, we also give 

a penalty by subtracting a penalty score Po to be determined 

experimentally.  

4. PERFORMANCE EVALUATION 
Our system is developed based on the WePS2 dataset, which 

contains 30 ambiguous names. Each name is associated with 

around 150 documents.  The total number of documents is 3,444. 

The names are extracted from different domains, which can help 

to test the system in real application without any bias. We use 

both the B-Cubed scores described in [3] and Purity-based scores 

described in [1] to evaluate our system.  The official ranking score 

for WePS2 is the F-measure (Harmonic Mean) of B-cubed 

precision and recall, and for WePS1 is the purity based F-

measure. The workshops provide two F-measures, one gives equal 

weighting to precision and recall (α = 0.5), the other give higher 

weighting to recall (α = 0.2). 

As the training data are provided, all the algorithm parameters are 

determined experimentally based on WePS2 test data. Due to the 

limit of the paper, we will simply give out the parameters used 

without giving details of the experiments.  

Optimal clustering threshold is difficult to find when the size of 

the clusters can vary a lot from person to person [2]. In WePS2’s 

local data collection, the minimum number of clusters is 1 and the 

maximum number of clusters is 56. Also, the number of 

documents can be from just one document in a cluster to 99 

documents in another. The high dimensionality of the document 

vectors also makes it difficult to model clustering behaviors. In 

our system, the similarity measurement is Cosine Similarity of 

two vectors. The algorithm stops if the maximum similarity 

between clusters is less than the cosine similarity threshold. The 

threshold is 0.1, determined experimentally, and also consistent 

with other systems [9,20]. The weighting factors for different 

tokens are tuned based on their importance to the clustering, their 

values are given in Table 2. All these parameters are set 

according to experiments on the WPS2 test data. Experimental 

data show that metadata and context sentences play more 

important roles. Snippets and context window are less important 

perhaps because their information is less coherent. 

Table 2 Token Weighting Factors (WF) 

Threshold values for VMR, the Divergence Value and the 

corresponding penalty values should be scaled accordingly to the 

specific application. If these values are higher, then they can have 

a better control power on topic. The upper bound and lower bound 

for these values are 1 and 0 respectively. These values should also 

be proportional to the cosine similarity threshold. Normally, 

setting the value of penalty scores similar to the cosine similarity 

threshold will achieve a good performance. The parameters 

related to the penalties in our system are listed in Table 3. 

Table 3 Threshold Settings in the Evaluation 

Table 4 gives the performance evaluation of our system, labeled 

as HAC_Topic, compared to 2 algorithms within known upper 

bound and the top 3 performers in the WePS2 evaluation. The 

BEST-HAC-TOKENS and the BEST-HAC-BIGRAMS systems 

are the upper bound systems provided by the WePS workshop 

committee. These two systems have the optimal threshold on each 

namesake beforehand. The Top1 performer is the PolyUHK 

system [7] which uses both global and local features. PolyUHK 

used the Google 1T corpus to learn the weighting of unigrams and 

bigrams and query Google to find extra information about a 

person. The Top 2 system UVA_1 [5] uses simple tokens from the 

html cleaned documents. The Top 3 system ITC-UT-1 [11] uses 

rich features including named entities, compound nouns and URL 

links within the local page. Table 4 shows that our system 

outperforms all the top 3 teams in both F-0.5 and F-0.2 scores 

beating systems using both local features and global features. 

Compared to the systems using local features, ours is at least 

5.7% improvement. This indicates that with a better designed 

clustering algorithm, the system can effective even if only local 

features are used. In other words, the clustering algorithm can 

make full use of local features so the performance can be 

improved without the loss of run time efficiency through the use 

of global features. 

Table 4 Performance of WePS2 Data on B-Cubed Measures 

It is also worth noting that our HAC_Topic system has shown 

a similar performance to the BEST-HAC-TOKENS, which is 

the upper limit of basic token based method. This implies that 

our method can help find relatively good stopping termination 

criteria.  

Table 5 Performance of WePS2 data on Purity Measures 

Table 5 shows the performance evaluation of the different 

systems using purity based scores. Again, our system achieves the 

best result in almost all the performance measures.  It even 

outperforms the best upper bound system BEST-HAC-TOKENS. 

The consistent high performance in both scoring schemes proves 

that our algorithm is rather robust which is very important in real 

applications. 

In order to fully validate the effectiveness of our approach, we 

also tried to apply the algorithm to different datasets. In principle, 

there are two more datasets to use: WePS1 and WePS3. Even 

though the WePS3 dataset is relatively large and comprehensive, 

Token 

type 

Title URL Metadata Snippets Context 

Window 

Context 

Sentence 

BOW 

WFt 1 1 2 0.8 0.8 2 1 

VMR Threshold VMR Penalty ( Pc) DV Threshold DV Penalty ( Po) 

0.02 0.08 0.01 0.1 

 F-measures B-Cubed 

SYSTEMS α = 0.5 α = 0.2 Pre. Rec. 

BEST-HAC-TOKENS 0.85 0.84 0.89 0.83 

BEST-HAC-BIGRAMS 0.85 0.83 0.91 0.81 

Top1:PolyUHK 0.82 0.80 0.87 0.79 

Top2:UVA_1 0.81 0.80 0.85 0.80 

Top3:ITC-UT_1 0.81 0.76 0.93 0.73 

HAC_Topic 0.85 0.83 0.92 0.82 

 F-measures  

SYSTEMS α= 0.5 α= 0.2 Pur. Inv_Pur. 

BEST-HAC-TOKENS 0.90 0.89 0.93 0.88 

BEST-HAC-BIGRAMS 0.90 0.87 0.94 0.86 

Top1:PolyUHK 0.88 0.87 0.91 0.86 

Top2:UVA_1 0.87 0.87 0.89 0.87 

Top3:ITC-UT_1 0.87 0.83 0.95 0.81 

HAC_Topic 0.90 0.89 0.94 0.88 



the answer set is problematic. It was produced using online crowd 

sourcing method with little manual verification. So, the set 

contains incorrect data and also missing data. Thus, comparison to 

others is not meaningful. Thus, we only used the manually 

prepared WePS1 dataset for further evaluation and comparison.  

The WePS1 dataset contains a test set with 30 names and a 

training set with 49 names. Our system ran the test set to compare 

to the other systems in WePS1. The top 3 systems [5,8,18] are all 

using rich local features such as tokens, URLs, Named Entities 

and time expressions.  Table 6 shows the performance evaluation 

based on Purity measures as the official ranking in WePS1 

workshop only provided purity-based performance measures, 

where purity is a measure for precision level and inverse purity is 

for recall level. As shown in Table 6, our system outperforms all 

the other systems in terms of purity scores. This behavior is 

expected because the measures are designed to prevent the 

merging of two clusters referring to different namesakes. Our 

purity score has a 15.2% improvement to the best system 

CU_COMSEM. In terms of the inverse purity score, our system 

outperforms CU_COMSEM by 3.4%. The overall improvement 

in F-score is a significant 10.2%. 

Table 6 Performance of WePS1 data on Purity Measures 

We further evaluate the effectiveness of our clustering method 

compared to the regular HAC method without the use of topic 

information (labeled as HAC_NoTopic) using WePS2 as training 

data. Table 7a shows the experiment results for evaluation based 

on the test dataset of WePS1 only and Table 7b shows the 

evaluation using both the test dataset and training dataset of 

WePS1. 

Table 7a Performance of HAC Using WePS1 Test Data 

 B-Cubed Purity F-Measure 

SYSTEMS BEP BER P IP B-Cubed Purity 

HAC_Topic 0.79 0.85 0.83 0.91 0.81 0.86 

HAC_NoTopic 0.75 0.85 0.67 0.91 0.78 0.76 

 

Table 7b Performance on HAC Using WePS1 Complete Data 

Table 7a shows that the B-Cubed F-measure is improved by 

3.8%. Furthermore, the Purity based F-measure is improved by 

13.1%. This further shows that the improvement by our system is 

mainly contributed by the improvement in precision so the 

resulting data is more reliable. For the full dataset as shown in the 

Table 7b, the corpus is composed of 79 name queries with much 

more variations in terms of numbers of documents in each 

collection. It is obvious that when the dataset gets larger, our 

algorithm has further improvement in all the precision related 

measures.  However, HAC_NoTopic is better in terms of recall 

related measures.  It is certainly understandable that our system 

has gains in precision at the cost of recall, at least statistically.  

The important issue is, our algorithm is better for both datasets in 

terms of F-measure which further confirms that our algorithm can 

give overall performance improvement compared to the regular 

HAC. This means that the introduction of the Hit List vector is 

very effective. 

Further investigation shows, however, that our algorithm 

sometimes can improve both the precision and recall.  Table 8 

shows the micro level performance in B-Cubed measures on all 

query names in the WePS-1 test set. Take the query “Neil_Clark”, 

as an example, the precision is improved by 29% and the recall is 

improved by 6% as well. The overall performance shows our 

algorithm has significant improvement in precision while keeping 

the recall at a similar level. This is because we have enough 

features to distinguish different namesakes without losing any 

useful information. In other words, the algorithm has the ability to 

successfully guide clustering to the correct direction. 

Table 8 Micro Performance on WePS-1 Test Set (B-Cubed) 

 Normal HAC Using Topic Capturing 

topic BEP BER F-0.5 BEP BER F-0.5 

Alvin_Cooper 0.85 0.85 0.85 0.85 0.85 0.85 

Arthur_Morgan 0.66 0.82 0.73 0.76 0.79 0.77 

Chris_Brockett 0.93 0.86 0.89 0.94 0.82 0.88 

Dekang_Lin 1.00 0.86 0.93 1.00 0.90 0.95 

Frank_Keller 0.87 0.79 0.83 0.86 0.81 0.84 

George_Foster 0.72 0.75 0.74 0.71 0.83 0.77 

Harry_Hughes 0.86 0.91 0.88 0.88 0.85 0.87 

James_Curran 0.71 0.81 0.76 0.66 0.83 0.73 

James_Davidson 0.86 0.91 0.88 0.84 0.92 0.88 

James_Hamilton 0.63 0.72 0.68 0.75 0.74 0.75 

James_Morehead 0.59 0.88 0.71 0.60 0.86 0.71 

Jerry_Hobbs 0.92 0.77 0.84 0.92 0.77 0.84 

John_Nelson 0.76 0.89 0.82 0.80 0.88 0.84 

Jonathan_Brooks 0.87 0.91 0.89 0.87 0.91 0.89 

Jude_Brown 0.68 0.85 0.75 0.78 0.83 0.80 

Karen_Peterson 0.72 0.98 0.83 0.76 0.98 0.86 

Leon_Barrett 0.91 0.78 0.84 0.93 0.78 0.85 

Marcy_Jackson 0.73 0.79 0.76 0.71 0.79 0.75 

Mark_Johnson 0.58 0.92 0.71 0.77 0.91 0.83 

Martha_Edwards 0.42 0.93 0.58 0.51 0.93 0.66 

Neil_Clark 0.68 0.81 0.74 0.97 0.87 0.92 

Patrick_Killen 0.70 0.81 0.75 0.87 0.76 0.81 

Robert_Moore 0.70 0.70 0.70 0.87 0.67 0.76 

Sharon_Goldwater 0.98 0.82 0.89 0.99 0.80 0.88 

Stephan_Johnson 0.88 0.85 0.87 0.92 0.83 0.88 

Stephen_Clark 0.87 0.88 0.88 0.83 0.87 0.85 

Thomas_Fraser 0.42 0.88 0.57 0.46 0.85 0.60 

Thomas_Kirk 0.57 0.88 0.70 0.71 0.88 0.79 

Violet_Howard 0.55 0.96 0.70 0.61 0.96 0.75 

William_Dickson 0.59 0.89 0.71 0.55 0.90 0.68 

Average 0.74 0.85 0.78 0.79 0.85 0.81 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed an effective HAC algorithm using 

additional topic information for web persons disambiguation. The 

experimental results show that our proposed clustering algorithm 

can achieve very good performance over the conventional 

methods.  The key to the high performance of this algorithm is 

that it can effectively reduce the over merging of namesakes in 

clustering especially apparent when the cluster sizes can vary a 

lot. The disambiguation power of the method is thus improved 

significantly. As a result, features required in the algorithm are 

less demanding than other algorithms used for web persons 

disambiguation. In fact, our algorithm only uses simple local 

features from the training data which is readily available in most 

of the current search engines. This means that the processing time 

and the storage requirement in our system is much less 

demanding. This is rather important in practice where timely 

feedback to user queries is essential. As the features selected in 

our algorithm are already common indexed terms by modern 

search engines, the method can be developed easily on any 

existing search engine.  

 F-measures  

SYSTEMS α = 0.5 α = 0.2 Pur. Inv_Pur 

Top1:CU_COMSEM 0.78 0.83 0.72 0.88 

Top2: IRST-BP 0.75 0.77 0.75 0.80 

Top3: PSNUS 0.75 0.78 0.73 0.82 

HAC_Topic 0.86 0.89 0.83 0.91 

 B-Cubed Purity F-Measure 

SYSTEMS BEP BER P IP B-Cubed Purity 

HAC_Topic 0.88 0.82 0.70 0.89 0.84 0.76 

HAC_NoTopic 0.84 0.84 0.67 0.90 0.82 0.75 



However, there is still room for improvement. Firstly, the 

parameter settings are done based on WePS2 data. In principle, 

the parameters are sensitive to the data as they are threshold based 

algorithms. This is particularly true if the application is used in 

different domains. Adjusting parameters for a given domain is 

important for the success for the system. The algorithm will be 

more robust if the number of parameters can be reduced. Possible 

reduction can be investigated over the parameters used for the 

topic related penalties. We can also further investigate methods to 

reduce the dimension of the feature vectors used in the algorithm. 

We can also study the possibility of using relatively cheap global 

data sources for the training phase. Some global data can be 

achieved offline without knowing user queries, such as pre-

compiled corpus for learning term frequencies. The use of such 

offline data will not greatly affect the query processing time. 

Other possible directions for feature enrichment include using 

biographical information from the webpages and utilizing more 

semantic information such as synonyms information.  

It is important to point out that clustering is only the first step in 

web persons disambiguation. To give a full picture for the users, 

the system should also be able to label the resulting clusters with 

the corresponding attributes of the namesakes.  
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