
High Performance Clustering for Web Person Name
Disambiguation Using Topic Capturing

Zhengzhong Liu Qin Lu Jian Xu

Department of Computing
The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
+852-2766-7247

hector.liu@polyu.edu.hk

csluqin@comp.polyu.edu.hk

csjxu@comp.polyu.edu.hk

ABSTRACT

Searching for named entities is a common task on the web.

Among different named entities, person names are among the

most frequently searched terms. However, many people can share

the same name and the current search engines are not designed to

identify a specific entity, or a namesake. One possible solution is

to identify a namesake through clustering webpages for different

namesakes. In this paper, we propose a clustering algorithm which

makes use of topic related information to improve clustering. The

system is trained on the WePS2 dataset and tested on both the

WePS1 and WePS2 dataset. Experimental results show that our

system outperforms all the other systems in the WePS workshops

using B-Cubed and Purity based measures. And the performance

is also consistent and robust on different datasets. Most important

of all, the algorithm is very efficient for web persons

disambiguation because it only needs to use data already indexed

in search engines. In other words, only local data is used as

feature data to avoid query induced web search.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – Clustering; I.2.7 [Artificial Intelligence]: Natural

Language Processing - Text analysis.

General Terms

Algorithms, Experimentation

Keywords

Web Person Name Disambiguation, Text Clustering

1. INTRODUCTION
When people search for a name, one may intend to find a specific

entity, called the namesake associated with that name. Current

search engines normally return a large set of documents

containing the searched name string based on features such as hit

ratio and hyperlinks associated with popular search interest as a

whole in the internet rather than features to distinguish different

namesakes. For example, when a user submits the query

“George Bush”, the returned documents by a search engine

may include mentions such as (1)George W. Bush (The

43
rd
 President of U.S. and (2)George W.H. Bush

(The 41
st
 President of U.S.)that are contained with

different ranks. However, the mentions of George Bush

(Professor of Hebrew University, U.S) would be

hard to find as they are being returned as very low ranked files

that would normally be missed.

Identifying a specific entity using the current search engine is time

consuming because the scale of the returned documents must be

large enough to ensure coverage of the different namesakes

especially to contain all the documents with namesakes of much

less popular persons.

The task of identifying different namesakes through web search is

called web persons disambiguation. Recent works on web persons

disambiguation have been reported in the WePS workshops [1,2].

The reported systems used different clustering techniques to

organize the searched results according to either closed

information or open information to disambiguate different

namesakes. Some systems have achieved competitive

performance by incorporating large amount of open information

[7] or by conducting expensive training process [14]. In this

paper, we present a novel algorithm based on Hierarchical

Agglomerative Clustering(HAC) [16] which makes use of topic

information using a so called hit list to make clustering more

suitable and effective for web persons disambiguation.

The rest of the paper is organized as follows. Section 2 presents

related works. Section 3 describes our algorithm design. Section 4

gives the performance evaluation and Section 5 is the conclusion.

2. RELATED WORKS
Researchers have adopted different assumptions about the data for

web persons disambiguation. A common assumption is that each

document is associated with only one person and thus a specific

namesake [3,4,7]. Others may select some smaller units such as

paragraph to represent a single person [18].

Different systems adopted different features for similarity

measures. The performance of a system is highly related to the

features used. Generally speaking, feature selection can be

classified into either local methods or global methods. The local

methods select and assign weights to features according to the

given collection. Among the local methods, [3] extracts features

from the sentences that contain a co-reference of the target name

and [15] extracts biographical information from web pages. Many

systems in the WePS workshops use simple word tokens from the

webpages found in the given corpus [4,7,10]. Some systems use

more advanced features like word bigrams [7], phrases [8] or

named entities [18]. On the other hand, global methods

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

EOS, SIGIR 2011 workshop, July 28, 2011, Beijing, China.
Copyright is held by the author/owner(s).

incorporate information external to the given dataset such as

external corpora or online information for similarity measures.

For example, [19] searches for external snippets from Google to

directly help in clustering. Other systems may use the external

knowledge to tune the weightings of the different features. For

example, [7] uses the Google 1T 5-gram data to learn frequencies

of bigrams. [14] uses Wikipedia to find phrases in documents.

In addition, because webpages can be noisy, some attempts are

made to use only relevant content blocks in webpages. [13]

identifies useful content by using predefined templates. [14] uses

Gradient Boosting method to learn the content weighting on 1.3

million popular web pages and 400,000 manually annotated

query-URL pairs. However, as the types of webpages can vary lot,

and new pages are continuously being generated, it may be

difficult to capture the most relevant information from the ever

changing data types.

In the task summary of the WePS2 workshop, [2] pointed out the

importance of selecting the optimal threshold for clustering. The

BEST_TOKEN system which knows all the optimal thresholds

beforehand, achieve a very good performance with only simple

local features. Results show that finding the optimal termination

criteria can greatly improve the clustering quality even with only

local data. Most prior works on clustering focus on optimization

of cluster numbers or threshold for a clustering task. [17]

reviewed the set of criteria for cluster number optimization.

However, these methods are normally application dependent. The

PDDP method used by [6] measures the non-cohesiveness of

clusters and split the data in the weakest cohesion point. The

Chameleon system [12] adopts a similar method that computes

both the inter-connectivity within the cluster and the proximity

among clusters. These methods work well on regular clustering

problems. However, most of them tend to avoid both singleton

and “All-in-One” clusters, whereas in our problem, the sizes of

the clusters can vary significantly. For web persons

disambiguation, it is important to handle large variations of

different cluster sizes.

3. ALGORITHM DESIGN

3.1 Preprocessing
For web persons disambiguation, the data are normally obtained

from information already stored in a search engine indexed under

the searched name including the webpages, the related snippets

and metadata to form a so called local corpus as supplied by

WePS workshops. Webpages as documents normally contain a

large amount of noise including formatting tags, executable

scripts and Meta information. The quality of preprocessing can

largely influence the performance of the clustering system.

We use some simple rule-based methods for noise removal. The

raw html pages are first parsed by the Beautiful Soup Parser1 to

remove html tags and scripts tags. Only plain text is reserved for

clustering. Similar to the measures in [4], for block level tags

(such as <div>, <p>), only text blocks with more than 10 words

are preserved. The preprocessing module also removes groups of

text less than 4 words that are separated by bars or text grouped

by tags to eliminate the navigation links in a webpage. After

the plaintext is produced, standard sentence segmentation, word

tokenization and stemming are applied using the NLTK toolkit2.

1 http://www.crummy.com/software/BeautifulSoup/

2 http://www.nltk.org/

Stop words, punctuations, and numbers less than 4 digits are also

removed.

3.2 Feature Selection
It is easy to understand that rich features and extra knowledge

beyond the local data collection can improve the system

performance. However, getting external information is rather

expensive, both on storage and computation. Such information is

also sometimes domain specific, which is difficult to obtain in

some cases. In practice, we also know that as long as there is

information for a specific namesake in the local data, it is often

sufficient for human to identify the entity. In this work, we

explore methods to make full use of local features, and try to

explore the full potential of locally provided information.

Our algorithms use the standard Vector Space Model commonly

used by many information retrieval systems. Each document is

represented by a vector formed by 7 types of tokens extracted

from local data as listed below:

1. Webpage title: the title of the webpage is split to single words

and added to the feature space.

2. URL of webpage: they include both the host name of URL of a

webpage and path on the server. We remove the common

webpage extensions by a dictionary. Non-meaningful tokens

such as pure numbers and punctuations are removed.

3. Webpage metadata: only two kinds of metadata in a webpage,

“keywords” and “descriptions” are used if they exist. These

metadata are highly summarized and informative. Sometimes

they contain information that does not appear in the webpage.

4. Snippet: Query biased snippets returned by the Yahoo! search

engine (included in WePS data) which normally has reference

to the name. Snippets are highly summarized fragments of text.

Query biased snippets summarize the query context and distant

information relevant to the query term [21].

5. Context Window: Tokens in a context window within the

query name. The window size is selected based on experiments.

6. Context Sentence: The whole sentence that contains the query

name.

7. Bag of Words: Commonly used feature to represent the

document. In our system, we simply index all the words in the

document as tokens in the feature space.

For a token s, we use the TF.IDF weighting scheme with its

weight calculated as:

 () (

)

where tfs is term frequency of s, Nd is the total number of

documents, and dfs is the number of documents in which s is

present. Furthermore, we give weight factor to each type of tokens

denoted by WF(s) because some might be more important than

others. Thus, the final normalized weight for each token using

cosine co-efficiency is given as:

 ()

√∑ (
)

3.3 Clustering Algorithm
Our clustering algorithm is based on the common Hierarchical

Agglomerative Clustering (HAC Algorithm) [16]. In HAC, all

documents are treated as singleton clusters initially, and are

referred to as “leaf clusters”. In each iteration of HAC, the two

most similar clusters will be merged into a larger cluster. The

centroid vectors of the two clusters will be merged to a new

centroid vector. During the merging of clusters, there are

generally two trends in the cluster’s centroid:

1. A small set of keywords will be repeatedly matched, thus

maintaining a higher weight in the cluster centroid vector.

2. As new tokens are constantly added to the cluster centroid,

there are some rare words to be added too with relatively low

weight. And these low weight tokens occupy a large portion in

the vector.

The HAC algorithm generally works well at the beginning of the

clustering. However, when the above two phenomena become

more and more prominent, the performance begins to deteriorate.

The system may mistakenly merge two large clusters together

because of the large number of token hits as shown in Figure 1.

Also, some newly added tokens may make the topic diverge to a

wrong direction. In Figure 2, the set of clusters about a journalist

may be mistakenly merged together with the cluster about

sergeants in a war because of the match on some non-topic words.

Figure 1 Merge of Clusters with low weight terms

Figure 2 Topic Divergence

3.3.1 Topic Capturing
To solve the problem created by noise data not related to certain

topic, we assume that most of the webpages describing the same

namesake are likely to have similar topics. For example,

documents about a journalist should mainly contain topics about

news, journals and so on. Documents about a sergeant, however,

should primarily contain topics about war and the like. Based on

this assumption, we try to merge document clusters only if they

share consistent and useful topics. In other words, our system

favors merging clusters that are likely to mention the same topics.

In order to obtain the core topic words, we created a vector called

“Hit List” during the clustering process. This vector is maintained

for each non-singleton cluster in addition to the centroid vector

used in the conventional HAC.

The Hit List of a cluster C is actually the vector containing the

shared tokens of the two source clusters that are merged to form

cluster C. Each token in the Hit List is associated with a weight,

which is the product of its origin normalized weights in the two

source clusters. The construction of a Hit List vector can be

illustrated using the example in Table 1. It is worth noting that

the sum of the weights in the Hit List is the dot product of the

centroid vector in cluster C1 and cluster C2. Because the vectors

are already normalized, the dot product represents the cosine

similarity of C1 and C2. So the Hit List actually records the

contribution of each token to the formation of this new cluster C.

Table 1 Example of Hit List construction by merging two

clusters of the same size (number of documents in the cluster)

C2 umass virginia research student

Centroid Vector 0.5 0.2 0.2 0.1

Table 1 shows that if a token gets a high weight in the Hit List, it

should have high weights in its source clusters as well. This

means that tokens with high weights in the Hit List are normally

important words to documents in the cluster. Accordingly, they

can represent the topic of the cluster. As the clustering process

continues, the Hit List gradually grows larger. But only the topic

words, which are likely to be repeated in many documents, will

gain higher weights than general words. So we only keep words

with higher weights as topic words. To maintain topic words with

significance, we select a fixed threshold that is proportional to the

cosine similarity threshold value used in HAC which will be

explained in the performance evaluation section.

3.3.2 Similarity Modification Based on Topics
With the help of the Hit List, the similarity measure used in the

HAC is slightly modified by a simple scheme: If two clusters that

are not likely to be talking about the same topic, their similarity

value will be reduced by a penalty value. We consider two cases

for the penalty. The first one is when the Hit List of the merged

cluster has only few words, which means that the two clusters are

generally matched based on the large amount of low weight

tokens. The second one is when the Hit List of the merged cluster

has only few overlaps with the respective Hit Lists of the source

clusters which indicate topic divergence.

For the first case, we use the Vital Match Ratio to handle the

problem. Given two clusters, C1 and C2 with their feature vector

F1 and F2, and their corresponding Hit List, H1 and H2, and the

merged cluster Hit List Hc, The Vital Match Ratio of C, denoted

by VMRc is calculated using the formula:

 ()

 () ()

where card(Hc), card(C1), and card(C2) denote the respective

cardinalities of the respective vectors. If VMRc is less than a

threshold, we will give penalty to the similarity by subtracting a

penalty score Pc to be determined experimentally.

For the second case, we use the overlapping similarities between

H1 and Hc and between H2 and Hc to detect the divergence of the

clusters to consider penalty. For two vectors and V’, let us use

 () and () to denote the weights of a term u in the

corresponding vectors. The overlap similarity is then given as:

 ()
∑ (() ())

∑ () ∑ ()

If one of the two to be merged clusters is a singleton cluster,

which would not have had a Hit List associated with it, we let the

C1 umass virginia research student

Centroid Vector 0.5 0.1 0.4 0

Merged C umass virginia research student

Centroid Vector 0.5 0.15 0.3 0.05

Hit List 0.25 0.02 0.08 0

Journalist

News

Journal

Painter

Art works

Pictures

Profile, Contact

Report, Website

Advertisement,

Journalist Painter

 War

 Sergeant

Hero,

Country,

Democratic

Article

Investigate

Journalist Sergeant in War

Journalist

Newspaper

* Hit List for cluster 1 and cluster 2 are omitted.

** For demonstration purpose, the centroid vector for the

merged cluster is not normalized.

overlap similarity equals to the overlap threshold. Then, we define

the divergence value (DV) as the harmonic mean of the two

values, which is given as:

 ()

 ()

In particular, DV value will be 0 if either one of the overlap

similarity is 0. If DV value is lower than a threshold, we also give

a penalty by subtracting a penalty score Po to be determined

experimentally.

4. PERFORMANCE EVALUATION
Our system is developed based on the WePS2 dataset, which

contains 30 ambiguous names. Each name is associated with

around 150 documents. The total number of documents is 3,444.

The names are extracted from different domains, which can help

to test the system in real application without any bias. We use

both the B-Cubed scores described in [3] and Purity-based scores

described in [1] to evaluate our system. The official ranking score

for WePS2 is the F-measure (Harmonic Mean) of B-cubed

precision and recall, and for WePS1 is the purity based F-

measure. The workshops provide two F-measures, one gives equal

weighting to precision and recall (α = 0.5), the other give higher

weighting to recall (α = 0.2).

As the training data are provided, all the algorithm parameters are

determined experimentally based on WePS2 test data. Due to the

limit of the paper, we will simply give out the parameters used

without giving details of the experiments.

Optimal clustering threshold is difficult to find when the size of

the clusters can vary a lot from person to person [2]. In WePS2’s

local data collection, the minimum number of clusters is 1 and the

maximum number of clusters is 56. Also, the number of

documents can be from just one document in a cluster to 99

documents in another. The high dimensionality of the document

vectors also makes it difficult to model clustering behaviors. In

our system, the similarity measurement is Cosine Similarity of

two vectors. The algorithm stops if the maximum similarity

between clusters is less than the cosine similarity threshold. The

threshold is 0.1, determined experimentally, and also consistent

with other systems [9,20]. The weighting factors for different

tokens are tuned based on their importance to the clustering, their

values are given in Table 2. All these parameters are set

according to experiments on the WPS2 test data. Experimental

data show that metadata and context sentences play more

important roles. Snippets and context window are less important

perhaps because their information is less coherent.

Table 2 Token Weighting Factors (WF)

Threshold values for VMR, the Divergence Value and the

corresponding penalty values should be scaled accordingly to the

specific application. If these values are higher, then they can have

a better control power on topic. The upper bound and lower bound

for these values are 1 and 0 respectively. These values should also

be proportional to the cosine similarity threshold. Normally,

setting the value of penalty scores similar to the cosine similarity

threshold will achieve a good performance. The parameters

related to the penalties in our system are listed in Table 3.

Table 3 Threshold Settings in the Evaluation

Table 4 gives the performance evaluation of our system, labeled

as HAC_Topic, compared to 2 algorithms within known upper

bound and the top 3 performers in the WePS2 evaluation. The

BEST-HAC-TOKENS and the BEST-HAC-BIGRAMS systems

are the upper bound systems provided by the WePS workshop

committee. These two systems have the optimal threshold on each

namesake beforehand. The Top1 performer is the PolyUHK

system [7] which uses both global and local features. PolyUHK

used the Google 1T corpus to learn the weighting of unigrams and

bigrams and query Google to find extra information about a

person. The Top 2 system UVA_1 [5] uses simple tokens from the

html cleaned documents. The Top 3 system ITC-UT-1 [11] uses

rich features including named entities, compound nouns and URL

links within the local page. Table 4 shows that our system

outperforms all the top 3 teams in both F-0.5 and F-0.2 scores

beating systems using both local features and global features.

Compared to the systems using local features, ours is at least

5.7% improvement. This indicates that with a better designed

clustering algorithm, the system can effective even if only local

features are used. In other words, the clustering algorithm can

make full use of local features so the performance can be

improved without the loss of run time efficiency through the use

of global features.

Table 4 Performance of WePS2 Data on B-Cubed Measures

It is also worth noting that our HAC_Topic system has shown

a similar performance to the BEST-HAC-TOKENS, which is

the upper limit of basic token based method. This implies that

our method can help find relatively good stopping termination

criteria.

Table 5 Performance of WePS2 data on Purity Measures

Table 5 shows the performance evaluation of the different

systems using purity based scores. Again, our system achieves the

best result in almost all the performance measures. It even

outperforms the best upper bound system BEST-HAC-TOKENS.

The consistent high performance in both scoring schemes proves

that our algorithm is rather robust which is very important in real

applications.

In order to fully validate the effectiveness of our approach, we

also tried to apply the algorithm to different datasets. In principle,

there are two more datasets to use: WePS1 and WePS3. Even

though the WePS3 dataset is relatively large and comprehensive,

Token

type

Title URL Metadata Snippets Context

Window

Context

Sentence

BOW

WFt 1 1 2 0.8 0.8 2 1

VMR Threshold VMR Penalty (Pc) DV Threshold DV Penalty (Po)

0.02 0.08 0.01 0.1

 F-measures B-Cubed

SYSTEMS α = 0.5 α = 0.2 Pre. Rec.

BEST-HAC-TOKENS 0.85 0.84 0.89 0.83

BEST-HAC-BIGRAMS 0.85 0.83 0.91 0.81

Top1:PolyUHK 0.82 0.80 0.87 0.79

Top2:UVA_1 0.81 0.80 0.85 0.80

Top3:ITC-UT_1 0.81 0.76 0.93 0.73

HAC_Topic 0.85 0.83 0.92 0.82

 F-measures

SYSTEMS α= 0.5 α= 0.2 Pur. Inv_Pur.

BEST-HAC-TOKENS 0.90 0.89 0.93 0.88

BEST-HAC-BIGRAMS 0.90 0.87 0.94 0.86

Top1:PolyUHK 0.88 0.87 0.91 0.86

Top2:UVA_1 0.87 0.87 0.89 0.87

Top3:ITC-UT_1 0.87 0.83 0.95 0.81

HAC_Topic 0.90 0.89 0.94 0.88

the answer set is problematic. It was produced using online crowd

sourcing method with little manual verification. So, the set

contains incorrect data and also missing data. Thus, comparison to

others is not meaningful. Thus, we only used the manually

prepared WePS1 dataset for further evaluation and comparison.

The WePS1 dataset contains a test set with 30 names and a

training set with 49 names. Our system ran the test set to compare

to the other systems in WePS1. The top 3 systems [5,8,18] are all

using rich local features such as tokens, URLs, Named Entities

and time expressions. Table 6 shows the performance evaluation

based on Purity measures as the official ranking in WePS1

workshop only provided purity-based performance measures,

where purity is a measure for precision level and inverse purity is

for recall level. As shown in Table 6, our system outperforms all

the other systems in terms of purity scores. This behavior is

expected because the measures are designed to prevent the

merging of two clusters referring to different namesakes. Our

purity score has a 15.2% improvement to the best system

CU_COMSEM. In terms of the inverse purity score, our system

outperforms CU_COMSEM by 3.4%. The overall improvement

in F-score is a significant 10.2%.

Table 6 Performance of WePS1 data on Purity Measures

We further evaluate the effectiveness of our clustering method

compared to the regular HAC method without the use of topic

information (labeled as HAC_NoTopic) using WePS2 as training

data. Table 7a shows the experiment results for evaluation based

on the test dataset of WePS1 only and Table 7b shows the

evaluation using both the test dataset and training dataset of

WePS1.

Table 7a Performance of HAC Using WePS1 Test Data

 B-Cubed Purity F-Measure

SYSTEMS BEP BER P IP B-Cubed Purity

HAC_Topic 0.79 0.85 0.83 0.91 0.81 0.86

HAC_NoTopic 0.75 0.85 0.67 0.91 0.78 0.76

Table 7b Performance on HAC Using WePS1 Complete Data

Table 7a shows that the B-Cubed F-measure is improved by

3.8%. Furthermore, the Purity based F-measure is improved by

13.1%. This further shows that the improvement by our system is

mainly contributed by the improvement in precision so the

resulting data is more reliable. For the full dataset as shown in the

Table 7b, the corpus is composed of 79 name queries with much

more variations in terms of numbers of documents in each

collection. It is obvious that when the dataset gets larger, our

algorithm has further improvement in all the precision related

measures. However, HAC_NoTopic is better in terms of recall

related measures. It is certainly understandable that our system

has gains in precision at the cost of recall, at least statistically.

The important issue is, our algorithm is better for both datasets in

terms of F-measure which further confirms that our algorithm can

give overall performance improvement compared to the regular

HAC. This means that the introduction of the Hit List vector is

very effective.

Further investigation shows, however, that our algorithm

sometimes can improve both the precision and recall. Table 8

shows the micro level performance in B-Cubed measures on all

query names in the WePS-1 test set. Take the query “Neil_Clark”,

as an example, the precision is improved by 29% and the recall is

improved by 6% as well. The overall performance shows our

algorithm has significant improvement in precision while keeping

the recall at a similar level. This is because we have enough

features to distinguish different namesakes without losing any

useful information. In other words, the algorithm has the ability to

successfully guide clustering to the correct direction.

Table 8 Micro Performance on WePS-1 Test Set (B-Cubed)

 Normal HAC Using Topic Capturing

topic BEP BER F-0.5 BEP BER F-0.5

Alvin_Cooper 0.85 0.85 0.85 0.85 0.85 0.85

Arthur_Morgan 0.66 0.82 0.73 0.76 0.79 0.77

Chris_Brockett 0.93 0.86 0.89 0.94 0.82 0.88

Dekang_Lin 1.00 0.86 0.93 1.00 0.90 0.95

Frank_Keller 0.87 0.79 0.83 0.86 0.81 0.84

George_Foster 0.72 0.75 0.74 0.71 0.83 0.77

Harry_Hughes 0.86 0.91 0.88 0.88 0.85 0.87

James_Curran 0.71 0.81 0.76 0.66 0.83 0.73

James_Davidson 0.86 0.91 0.88 0.84 0.92 0.88

James_Hamilton 0.63 0.72 0.68 0.75 0.74 0.75

James_Morehead 0.59 0.88 0.71 0.60 0.86 0.71

Jerry_Hobbs 0.92 0.77 0.84 0.92 0.77 0.84

John_Nelson 0.76 0.89 0.82 0.80 0.88 0.84

Jonathan_Brooks 0.87 0.91 0.89 0.87 0.91 0.89

Jude_Brown 0.68 0.85 0.75 0.78 0.83 0.80

Karen_Peterson 0.72 0.98 0.83 0.76 0.98 0.86

Leon_Barrett 0.91 0.78 0.84 0.93 0.78 0.85

Marcy_Jackson 0.73 0.79 0.76 0.71 0.79 0.75

Mark_Johnson 0.58 0.92 0.71 0.77 0.91 0.83

Martha_Edwards 0.42 0.93 0.58 0.51 0.93 0.66

Neil_Clark 0.68 0.81 0.74 0.97 0.87 0.92

Patrick_Killen 0.70 0.81 0.75 0.87 0.76 0.81

Robert_Moore 0.70 0.70 0.70 0.87 0.67 0.76

Sharon_Goldwater 0.98 0.82 0.89 0.99 0.80 0.88

Stephan_Johnson 0.88 0.85 0.87 0.92 0.83 0.88

Stephen_Clark 0.87 0.88 0.88 0.83 0.87 0.85

Thomas_Fraser 0.42 0.88 0.57 0.46 0.85 0.60

Thomas_Kirk 0.57 0.88 0.70 0.71 0.88 0.79

Violet_Howard 0.55 0.96 0.70 0.61 0.96 0.75

William_Dickson 0.59 0.89 0.71 0.55 0.90 0.68

Average 0.74 0.85 0.78 0.79 0.85 0.81

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed an effective HAC algorithm using

additional topic information for web persons disambiguation. The

experimental results show that our proposed clustering algorithm

can achieve very good performance over the conventional

methods. The key to the high performance of this algorithm is

that it can effectively reduce the over merging of namesakes in

clustering especially apparent when the cluster sizes can vary a

lot. The disambiguation power of the method is thus improved

significantly. As a result, features required in the algorithm are

less demanding than other algorithms used for web persons

disambiguation. In fact, our algorithm only uses simple local

features from the training data which is readily available in most

of the current search engines. This means that the processing time

and the storage requirement in our system is much less

demanding. This is rather important in practice where timely

feedback to user queries is essential. As the features selected in

our algorithm are already common indexed terms by modern

search engines, the method can be developed easily on any

existing search engine.

 F-measures

SYSTEMS α = 0.5 α = 0.2 Pur. Inv_Pur

Top1:CU_COMSEM 0.78 0.83 0.72 0.88

Top2: IRST-BP 0.75 0.77 0.75 0.80

Top3: PSNUS 0.75 0.78 0.73 0.82

HAC_Topic 0.86 0.89 0.83 0.91

 B-Cubed Purity F-Measure

SYSTEMS BEP BER P IP B-Cubed Purity

HAC_Topic 0.88 0.82 0.70 0.89 0.84 0.76

HAC_NoTopic 0.84 0.84 0.67 0.90 0.82 0.75

However, there is still room for improvement. Firstly, the

parameter settings are done based on WePS2 data. In principle,

the parameters are sensitive to the data as they are threshold based

algorithms. This is particularly true if the application is used in

different domains. Adjusting parameters for a given domain is

important for the success for the system. The algorithm will be

more robust if the number of parameters can be reduced. Possible

reduction can be investigated over the parameters used for the

topic related penalties. We can also further investigate methods to

reduce the dimension of the feature vectors used in the algorithm.

We can also study the possibility of using relatively cheap global

data sources for the training phase. Some global data can be

achieved offline without knowing user queries, such as pre-

compiled corpus for learning term frequencies. The use of such

offline data will not greatly affect the query processing time.

Other possible directions for feature enrichment include using

biographical information from the webpages and utilizing more

semantic information such as synonyms information.

It is important to point out that clustering is only the first step in

web persons disambiguation. To give a full picture for the users,

the system should also be able to label the resulting clusters with

the corresponding attributes of the namesakes.

6. ACKNOWLEDGMENTS
The project is partially supported by China Soong Ching Ling

Foundation and Poly Project(COMP): RPVW.

7. REFERENCES

[1] Artiles, J., Gonzalo, J., & Sekine, S. 2007. The semeval-2007

weps evaluation: Establishing a benchmark for the web

people search task. Proceedings of Semeval, (June), 64-69.

[2] Artiles, J., Gonzalo, J., & Sekine, S. 2009. Weps 2 evaluation

campaign: overview of the web people search clustering task.

2nd Web People Search Evaluation Workshop (WePS 2009),

18th WWW Conference.

[3] Bagga, A., & Baldwin, B. 1998. Entity-based cross-

document coreferencing using the vector space model.

Proceedings of the 36th Annual Meeting of the Association

for Computational Linguistics and 17th International

Conference on Computational Linguistics-Volume 1, 79–85.

Association for Computational Linguistics.

[4] Balog, K., Azzopardi, L., & Rijke, M. de. 2005. Resolving

person names in web people search. Weaving services and

people on the World Wide Web, 301–323.

[5] Balog, K., He, J., Hofmann, K., Jijkoun, V., Monz, C.,

Tsagkias, M., et al. 2009. The University of Amsterdam at

WePS2. 2nd Web People Search Evaluation Workshop

(WePS 2009), 18th WWW Conference.

[6] Boley, D. 1998. Principal direction divisive partitioning.

Data mining and knowledge discovery, 2(4), 325–344.

Springer.

[7] Chen, Y., Lee, S. Y. M., & Huang, C. R.2009. Polyuhk: A

robust information extraction system for web personal

names. 2nd Web People Search Evaluation Workshop (WePS

2009), 18th WWW Conference.

[8] Chen, Y., & Martin, J. 2007. Cu-comsem: Exploring rich

features for unsupervised web personal name

disambiguation. Proceedings of the 4th International

Workshop on Semantic Evaluations (SemEval-2007), 125-

128.

[9] Elmacioglu, E., Tan, Y. F., Yan, S., Kan, M. Y., & Lee, D.

2007. PSNUS: Web people name disambiguation by simple

clustering with rich features. Proceedings of the Fourth

International Workshop on Semantic Evaluations (SemEval-

2007), 268–271.

[10] Han, X., & Zhao, J. 2009. CASIANED: Web Personal Name

Disambiguation Based on Professional Categorization. 2nd

Web People Search Evaluation Workshop (WePS 2009), 18th

WWW Conference, 2-5.

[11] Ikeda, M., Ono, S., Sato, I., Yoshida, M., & Nakagawa,

H.2009. Person Name Disambiguation on the Web by Two-

Stage Clustering. 2nd Web People Search Evaluation

Workshop (WePS 2009), 18th WWW Conference.

[12] Karypis, G., & Kumar, V.1999. Chameleon: hierarchical

clustering using dynamic modeling. Computer, 32(8), 68-75.

doi: 10.1109/2.781637.

[13] Lin, S.-hua, & Ho, J. M. 2002. Discovering informative

content blocks from Web documents. Proceedings of the

eighth ACM SIGKDD international conference on

Knowledge discovery and data mining (p. 588–593). ACM.

[14] Long, C., & Shi, L. 2010. Web person name disambiguation

by relevance weighting of extended feature sets. Third Web

People Search Evaluation Forum (WePS-3), CLEF (Vol.

2010, pp. 1-13).

[15] Mann, G. S., & Yarowsky, David. 2003. Unsupervised

personal name disambiguation. Proceedings of the seventh

conference on Natural language learning at HLT-NAACL

2003 -, 33-40. Morristown, NJ, USA: Association for

Computational Linguistics. doi: 10.3115/1119176.1119181.

[16] Manning, D. C., Raghavan, P., & Schutze, H. 2008.

Hierarchical Clustering. Introduction to Information
Retrieval. Cambridge University Press, New York, 2008, 377

- 401.

[17] Milligan, G. W., & Cooper, M. C.1985. An examination of

procedures for determining the number of clusters in a data

set. Psychometrika, 50(2), 159–179. Springer.

[18] Popescu, O., & Magnini, B.2007. Irst-bp: Web people search

using name entities. Proceedings of the Fourth International

Workshop on Semantic Evaluations (SemEval-2007), (June),

195-198.

[19] Rao, D., Garera, N., & Yarowsky, D.2007. JHU1: an

unsupervised approach to person name disambiguation using

web snippets. Proceedings of the Fourth International

Workshop on Semantic Evaluations (SemEval-2007), 2-5.

[20] Smirnova, K. A. E., & Trousse, B. 2010. Using web graph

structure for person name disambiguation. Third Web People

Search Evaluation Forum (WePS-3), CLEF (Vol. 2010).

[21] Tombros, A. and Sanderson, M. Advantages of query biased

summaries in information retrieval. Proceedings of the 21st

annual international ACM SIGIR conference on Research

and development in information retrieval, ACM (1998), 2–

10.

