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Abstract
Events, with their complex interconnected structures, are vital to semantic under-

standing in natural language. Extensive research has been conducted on analyzing
them, primarily focusing on frame structures (examining semantic roles such as partic-
ipants, time, and locations) and various forms of anaphora, such as event coreference,
verb phrase ellipsis, event sequence prediction, event schema and script induction.

The interconnected nature of events presents both challenges and opportunities.
On one hand, predicting and analyzing event structures can be complex. For example,
understanding events in a document can involve multiple structure prediction tasks
(e.g., event mention detection, event coreference, arguments extraction). On the
other hand, the interactions can be leveraged using structural constraints to improve
predictions, or providing a lens to study the mechanisms of models. This thesis
explores these challenges and opportunities in different data availability scenarios,
developing methods including direct supervised training, crowdsourcing procedures,
and incidental/indirect supervision.

In the first part, we present empirical results on event semantics using expert-
annotated, task-specific datasets. We start by introducing methods studying individual
structures, such as event mention prediction, pair-wise event coreference, and event se-
quencing. We then present approaches to solve problems involving multiple structures,
using multi-step or joint learning methods, such as joint coreference and sequencing,
slot filling and verb phrase ellipsis.

Recognizing the high cost of scaling expert-annotated datasets, the second part of
this thesis explores methods to increase data availability through crowdsourcing and
indirect supervision signals. These approaches offer new insights into event semantics,
revealing new semantic phenomena and offering a deeper understanding of how
models process semantics. A key contribution in this area is our LLM360 language
model project, which tracks and shares snapshots of the model at various stages
during its training process. We demonstrate the project’s utility for interpretability
analysis, using the complex anaphora task of Winograd schemas as a case study.

This thesis presents methods for analyzing and understanding the complex nature
of events. We observe that models trained on larger datasets can develop human-
interpretable structures, such as attention heads that capture correlations between
events and states. These developments may indicate an emerging semantic understand-
ing, particularly in Large Language Models (LLMs). Looking ahead, our analysis
with LLM360 opens new avenues for exploring how these models process semantics
internally, paving the way for the development of more effective control algorithms
and improved model architectures.





Acknowledgments
First and foremost, I owe a profound debt of gratitude to my advisors, Teruko

Mitamura and Eduard Hovy. Their expertise, patience, and insightful feedback have
been invaluable in shaping this work. Their mentorship has greatly influenced my
growth as a researcher in computational semantics, and their rigorous approach and
critical thinking have set a standard I aspire to meet. I am also deeply thankful to my
other committee members, Taylor Berg-Kirkpatrick and Vincent Ng, for their insights
and expertise, which have greatly expanded my understanding of this research field.

I would like to extend my thanks to my collaborators, Jun Araki, Xuezhe Ma,
Chenyan Xiong, Zhiting Hu, Adithya Pratapa, Kimihiro Hasegawa, Zhisong Zhang,
Hans Chalupsky, Zecong Hu, Xiang Kong, Shikun Zhang, Keyang Xu and many oth-
ers. Their contributions have enriched this thesis, and it has been both a privilege and
a pleasure to work with them. Special thanks to Susan Holm and Yukari Yamakawa,
whose careful annotation work was crucial for data collection and analysis.

I am grateful for the opportunity to be part of projects like CASL and LLM360,
which allowed me to collaborate with Bowen Tan, Hongyi Wang, Haonan Li, Yi Gu,
Tianhua Tao, Junbo Li, Hao Zhang, and Qirong Ho. Special thanks to Eric Xing for
making these projects possible and for inspiring me to take on new challenges.

I also want to express my gratitude to my colleagues during my time at Petuum,
including Aurick Qiao, Willie Neiswanger, Guanxiong Ding, Avinash Bukkittu,
Mansi Gupta, Pengzhi Gao, Atif Ahmed, Xin Gao, Wei Wei, Zecong Hu, Haoran Shi,
Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Cathy Serventi, Victor Miller,
and Mark Schulze. Their support were integral to my Ph.D. journey.

I am fortunate to have had friends who added joy to this journey, including Di
Wang, Yue Cen, Jingfei Zhang, Mu Li, Ye Song, Xiaohua Yan, Guoqing Zheng,
Ni Song, Desai Fan, Cun Mu, Anhong Guo, Xu Wang, Zheng Yao, Liangke Gui,
Junjie Hu, Wei-Cheng Chang, Hongliang Yu, Yuexin Wu, Jingzhou Liu, Jiarui Xu,
Juncheng Li, Chunting Zhou, Pengcheng Yin, Zhuyun Dai, Zihang Dai, Jiateng
Xie, Zhiling Yang, Qizhe Xie, Ruochen Xu, Shuyan Zhou, Lingpeng Kong, Haohan
Wang, Diyi Yang, Jiwei Li, Zi Yang, Yun-Nung Chen, Ting-Hao Huang, Xinlei Chen,
Xiang Chen, Ran Zhao, Hiroaki Hayashi, Sam Thomson, Dheeraj Rajagopal, Pradeep
Dasigi, Swabha Swayamdipta, Mrinmaya Sachan, Kartik Goyal, Yohan Jo, Zaid
Sheikh, Dongyeop Kang, Yun Wang, Miaomiao Wen, Zeyu Zheng, William Yang
Wang, Wang Ling, Ziqiang Feng and many others in LTI, CSD, MLD and HCII.

I also extend my thanks to the department secretaries, Stacey Young and others,
for their ongoing assistance and efficiency in handling administrative tasks, which
made this journey smoother.

I gratefully acknowledge the funding sources that supported this work: the
DARPA grants for “Deep Exploration and Filtering of Text (DEFT)” and “Knowledge-
directed Artificial Intelligence Reasoning Over Schemas (KAIROS)”.

Finally, I express my heartfelt gratitude to my family for their love, encourage-
ment, and understanding throughout this journey. Their belief and support have been
my greatest motivation.





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structures and Problems Related to Event Semantics . . . . . . . . . . . . . . . 2
1.3 Approach and Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Analyzing Event Structures with Expert Annotated Data 9

2 Event Detection 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Event Mention Detection Task . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Model for Type Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Realis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Adapting to a Chinese Event Detection system . . . . . . . . . . . . . . . . . . . 16

2.4.1 Improving Recall on Chinese . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Multi-Type Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.2 Chinese Data Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Pairwise Event Coreference and Sequencing 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Dataset and Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Gold Standard Annotations . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



3.5.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Graph Based Event Coreference and Sequencing 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Graph-Based Decoding Model . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.2 Baselines and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.4 Evaluation Results for Event Coreference . . . . . . . . . . . . . . . . . 39
4.4.5 Evaluation Results for Event Sequencing . . . . . . . . . . . . . . . . . 39

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.1 Event Coreference Challenges . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.2 Event Sequencing Challenges . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Identifying Missing Information as Hierarchical Structures 45
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Related Work on Verb Phrase Ellipsis . . . . . . . . . . . . . . . . . . . 47
5.2.2 Related Work on Implicit Argument Identification . . . . . . . . . . . . 48

5.3 Modeling Verb Phrase Ellipsis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1 Target Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Antecedent Head Resolution . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.3 Antecedent Boundary Determination . . . . . . . . . . . . . . . . . . . . 50

5.4 Does Joint Modeling work for VPE? . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 VPE Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5.3 Baselines and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 VPE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6.1 Target Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6.2 Antecedent Head Resolution . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6.3 Antecedent Boundary Determination . . . . . . . . . . . . . . . . . . . . 56
5.6.4 End-to-End Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Discussion of VPE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8 Modeling Implicit Argument Identification . . . . . . . . . . . . . . . . . . . . . 59

5.8.1 BERT-based Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.8.2 Argument Head-word Detector . . . . . . . . . . . . . . . . . . . . . . . 60
5.8.3 Head-to-span Expander . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

x



5.9 Experiment on IAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.9.1 Argument Linking with Gold Spans . . . . . . . . . . . . . . . . . . . . 61
5.9.2 Full Argument Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.9.3 Manual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

II Scaling up Data for Event Semantics 67

6 Event Salience 71
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 The Event Salience Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.1 Automatic Corpus Creation . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.2 Annotation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Feature-Based Event Salience Model . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 Neural Event Salience Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5.1 Kernel-based Centrality Estimation . . . . . . . . . . . . . . . . . . . . 77
6.5.2 Integrating Entities into KCE . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6.1 Event Salience Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6.2 The Event Intrusion Test: A Study . . . . . . . . . . . . . . . . . . . . . 79

6.7 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.7.1 Event Salience Performance . . . . . . . . . . . . . . . . . . . . . . . . 80
6.7.2 Intrusion Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Cross-document Event Identity via Dense Annotation 85
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3 Corpus Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.4 Annotating Coreference via Crowdsourcing . . . . . . . . . . . . . . . . . . . . 90

7.4.1 Annotation Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4.2 Annotation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4.3 Collecting CDEC annotations . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.4 Dataset Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.5 Studying Quasi-Identity of Events . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.6 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8 How Language Models Learn about Coreference 99
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xi



8.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.3.2 LLM360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.3.3 Automatic Circuit Discovery . . . . . . . . . . . . . . . . . . . . . . . . 104

8.4 How an LLM Solves Winograd Schemas . . . . . . . . . . . . . . . . . . . . . . 106
8.4.1 Circuit Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4.2 A Closer Look into the Circuits . . . . . . . . . . . . . . . . . . . . . . 108

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Conclusion 115

Appendices 117

A Appendix for Chapter 7 119
A.1 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2 Annotation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3 MTurk Consent Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.4 MTurk Qualification Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.4.1 Test Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.4.2 Test Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.5 HIT Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.6 Follow-up Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B Appendix for Chapter 8 131
B.1 LLM360 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.2 Formulation of the Information Flow Ruote Algorithm . . . . . . . . . . . . . . 132

B.2.1 Feed-Forward Network (FFN) Edges . . . . . . . . . . . . . . . . . . . 133
B.2.2 Attention Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.3 More Circuit Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 143

xii



List of Figures

1.1 An example event nugget annotation . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 There are many relations between event mentions. Above: The event relations

shown as a Directed Graph; Below: The actual event mentions in text annotated
by the relations. Red lines are coreference links; solid blue arrows represent
Subevent relations; dotted green arrows represent After relations. . . . . . . . . . 6

2.1 An example event nugget annotation . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Example of Event Coreference and Sequence relations. Red lines are coreference
links; solid blue arrows represent Subevent relations; dotted green arrows repre-
sent After relations. This figure is taken from the dataset annotated by annotators,
the links are different from Fig. 1.2 annotated by the authors. . . . . . . . . . . . 32

4.2 Latent Tree Model (left): tree structure formed by undirected links. Latent Graph
Model (right): a DAG form by directed links. Dashed red links highlight the
discrepancy between prediction and gold standard. The dotted yellow link (bottom
right) can be inferred from other links. . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Examples of implicit arguments and model illustration. The bold text indicates
the trigger word for the purchase event, while the underlined text indicates its
non-local “money” argument in the previous sentence. Our model first detects the
head-word “dollars”, and then expands it to the whole span. . . . . . . . . . . . . 59

5.2 Performance breakdown of Span-F1 on the top-20 frequent roles (on development
set, no type-constrained decoding). x-axis represents the percentage of local
arguments for this role, while y-axis denotes the role specific Span-F1 scores. The
two blue dashed lines denote the overall F1 scores (0.389) and local percentage
(82.8%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Examples annotations. Underlying words are annotated event triggers; the red
bold ones are annotated as salient. . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Learned Kernel Weights of KCE . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Intruder study results. X-axis shows the percentage of intruders inserted. Y-axis

is the AUC score scale. The left and right figures are results from salient and
non-salient intruders respectively. The blue bar is AUC. The orange shaded bar is
SA-AUC. The line shows the SA-AUC of the frequency baseline. . . . . . . . . 84

xiii



7.1 An illustration of the quasi-identity nature of events. The mention ‘[60] after-
shocks’ is only partially identical to the two mentions ‘[smaller] aftershocks’ and
‘[7.3] aftershock’, thus leading to two partial coreference links (✔). Interestingly,
the third mention pair is non-coreferential (✘), indicating that partial coreference
need not satisfy the transitivity property. . . . . . . . . . . . . . . . . . . . . . . 86

7.2 An illustration of the quasi-identity nature of events. The event [Haitian cholera]
‘outbreak’ is expressed by instances with varying counts of infections and deaths.
The identity of this event continuously evolves over space and time, attributed to
a new type of quasi-identity, spatiotemporal continuity. . . . . . . . . . . . . . . 87

7.3 Tool for annotating cross-document event coreference. The two documents are
shown side-by-side, with event mentions pre-highlighted. We provide on-screen
instructions as well as dedicated pages for viewing detailed instructions and
examples. As seen in the example here, we allow annotation of every pair of
mentions in the given document pair. In our annotation effort, we present every
pair of related documents on this tool, leading to a densely annotated dataset. . . 92

7.4 A taxonomy of event identity. While full and null identities are well understood,
the definition of partial identity is still evolving. We present the three types of
partial identity found in our dataset. . . . . . . . . . . . . . . . . . . . . . . . . 94

8.1 Top Left: the original IOI circuits identified by Wang et al. [211] on GPT2-
small [170], please refer to [211] for the detailed explanation of each head;
Bottom Left: IOI circuit on GPT-2 using Information Flow Routes (IFR) [77],
this graph includes the heads found in [211] and other general heads; Right: the
IOI circuit on Amber-7B [124] using IFR. The visualization is created with the
LM Transparency Tool [198]: each green dot denotes the representation of the
token at this point, the green edges denote the attention heads, and the purple
squares represents the Feed-Forward Layers. While the predictions are not shown
in this figure, the prediction of both circuits are “Mary”. . . . . . . . . . . . . . 100

8.2 AMBER’s performance on the Winogrande dataset across all 360 checkpoints
(x-axis). The evaluation is done with the common 5-shot setting. Our circuit
analysis will be conducted in a 0-shot setting to remove the influence of the
in-context examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.3 Jaccard Similarity of the intermediate checkpoint circuit vs. the final checkpoint
circuit. The left figure is on a sentence from the medium bucket, the right figure
is computed on a sentence from the simple bucket. . . . . . . . . . . . . . . . . 108

8.4 Circuits for the ”too much work”/”too little strength” example pair. . . . . . . . . 109
8.5 Circuits for the “keep heat”/“let out heat” example pair. Left is the circuit of the

“kept heat” sentence, Right is the circuit created via the contrastive method . . . . 110
8.6 Attention and Contribution Graph of selected attention edges from the “Keep the

Heat” contrastive circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.7 Circuits for the “scolded/refund” example pair. Left is the circuit of the “scolded”

sentence, Right is the circuit created via the contrastive method . . . . . . . . . . 113

B.1 The training loss curves of AMBER . . . . . . . . . . . . . . . . . . . . . . . . . 132

xiv



B.2 Contrastive Circuit Graphs for two Winograd pairs. Left: Sarah was a much better
surgeon than Maria, so the (harder/easier) cases always went to (Sarah/Maria).
Right: Keeping the doors closed and the windows opened kept the apartment cool,
because the heat was (kept/let out) by the (door/window) . . . . . . . . . . . . . 135

B.3 Contrastive Circuit Graphs for two Winograd pairs. Left: In the hotel laundry
room, Emma burned Mary’s shirt while ironing it, so the manager (scolded/refunded)
(Emma/Mary). Right: They had to eat a lot to gain the strength they had lost and
be able to work, they had too (much/little) (work/strength) . . . . . . . . . . . . 136

B.4 Base IFR Circuit for the Winograd pair: Sarah was a much better surgeon than
Maria, so the (harder/easier) cases always went to (Sarah/Maria). . . . . . . . . . 137

B.5 Base IFR Circuit for the Winograd pair: The gas was not smelling out of the tank
but out of the hose because the (leaky/sealed) (tank/hose). . . . . . . . . . . . . . 138

B.6 Base IFR Circuit for the Winograd pair: Keeping the doors closed and the win-
dows opened kept the apartment cool, because the heat was (let out/kept) by the
(doors/windows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.7 Base IFR Circuit for the Winograd pair: In the hotel laundry room, Emma burned
Mary’s shirt while ironing it, so the manager (refunded/scolded) (Emma/Mary). . 140

B.8 Base IFR Circuit for the Winograd pair: They had to eat a lot to gain the strength
they had lost and be able to work, they had too (much/little) (work/strength) . . . 141

xv





List of Tables

2.1 List of Event Types and Subtypes in the RichERE annotations . . . . . . . . . . 14
2.2 English Nugget Type System Ranking of TAC-KBP 2016 . . . . . . . . . . . . . 17
2.3 Official Chinese Nugget Performance Ranking at TAC-KBP 2016. . . . . . . . . 18
2.5 5-fold validation for Realis detection on training data with gold span and types . 19

3.1 A range of event coreference resolution work with different settings. . . . . . . . 22
3.2 Corpus Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Evaluation results and comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 List of features (with counts) in the pairwise model. Entity coreference are from

the Stanford Entity Coreference Engine [110]. . . . . . . . . . . . . . . . . . . . 29

4.1 Coreference Features. Parsing is done using Stanford CoreNLP [131]; frame
names are produced by Semafor [55]. . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Test Results for Event Coreference with the Singleton and Matching baselines. 40
4.3 Ablation study for Event Coreference. . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Test results for event sequencing. The Oracle Cluster+Temporal system is running

CAEVO on the Oracle Clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Ablation Study for Event Sequencing. . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Antecedent Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Corpus statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Results for Target Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Results for Antecedent Head Resolution . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Soft results for Antecedent Boundary Determination . . . . . . . . . . . . . . . 57
5.6 Soft results for Antecedent Boundary Determination with non-gold heads . . . . 57
5.7 Soft end-to-end results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8 Comparison of Span-based [65] and Head-based (ours) models on RAMS, given

gold argument spans. “+TCD” indicates whether applying type-constrained
decoding based on gold event types. . . . . . . . . . . . . . . . . . . . . . . . . 61

5.9 Comparison of the sequence-labeling model (Seq.) and our Head-based model
for argument detection on RAMS v1.0. All results are averaged over five runs, ‘∗’
denotes that the result of Head model is significantly better than the corresponding
Seq. model (by paired randomization test, p < 0.05). . . . . . . . . . . . . . . . 62

xvii



5.10 Ablation on the encoder for the head-based argument detection model (on develop-
ment set, no type-constrained decoding). “BERT-Full” is our full fine-tuned BERT
encoder, “No-Indicator” ablates indicating inputs, “No-FineTuning” freezes all
pre-trained parameters of BERT, and “LSTM” replaces the BERT with a bi-
directional LSTM encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.11 Performance breakdown for Span-F1 by argument-trigger distance d (on develop-
ment set, no type-constrained decoding). Numbers in parentheses at the second
row indicate the distribution over distance d. . . . . . . . . . . . . . . . . . . . . 63

5.12 Examples and results of error analysis. In the examples, the bold text indicates
the trigger word, followed by its event type noted in green. Arguments in gold
annotations are indicated by the underlined spans with red role types, while the
predicted arguments are indicated by [bracketed] spans with blue role types. . . . 64

6.1 Dataset Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Event Salience Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Event salience performance. (-E) and (-F) marks removing Features and Entity

information from the full KCM model. The relative performance differences are
computed against Frequency. W/T/L are the number of documents a method
wins, ties, and loses compared to Frequency. † and ‡ mark the statistically
significant improvements over Frequency†, LeToR‡ respectively. . . . . . . . 80

6.4 Event Salience Feature Ablation Results. The + sign indicates adding feature
groups to Frequency. SL is the sentence location feature. Event is the event
voting feature. Entity is the entity voting feature. Local is the local entity
voting feature. † marks the statistically significant improvements over +SL. . . . 81

6.5 Examples of pairs of Events/Entities in the kernels. The Word2vec column shows
the cosine similarity using pre-trained word vectors. The Kernel column shows
the closest kernel they belong after training. Items marked with (E) are entities. . 82

7.1 An overview of the compiled CDEC dataset. . . . . . . . . . . . . . . . . . . . . 90
7.2 An illustration of quasi-identity of event mentions across documents. These

examples cover the three identified types of quasi-identity, membership, subevent,
and spatiotemporal continuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Baseline results on development and test sets. For cross-encoder, we report the
average scores and their standard deviation across five runs. . . . . . . . . . . . . 98

8.1 The selected Winogrande samples, all reformatted as next token prediction tasks.
The correct counts measure the number of consecutive checkpoints at which the
model consistently answers the question correctly until the final checkpoint. . . . 107

A.1 Instructions as shown to the annotators on the interface. . . . . . . . . . . . . . . 121
A.2 Instructions as shown to the annotators on the interface. (contd) . . . . . . . . . 122
A.3 Examples for coreference and non-coreference, as shown to the annotators on the

interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.4 Examples for coreference and non-coreference, as shown to the annotators on the

interface. (contd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xviii



A.5 Consent Form attached to each of our HITs. We anonymize the document for the
conference review process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.6 Consent Form attached to each of our HITs. We anonymize the document for the
conference review process. (contd) . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.7 Examples used with the qualification test on Mechanical Turk. For each paragraph
with two highlighted events, we ask the question, “In the above paragraph, are the
highlighted events the same?”. The crowd worker has to select one of the “Yes”
or “No” options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.8 Examples used with the qualification test on Mechanical Turk. For each paragraph
with two highlighted events, we ask the question, “In the above paragraph, are the
highlighted events the same?”. The crowd worker has to select one of the “Yes”
or “No” options. (contd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.9 The template used in the qualification test to screen annotators. In addition to
instructions and examples, we present eight yes/no questions. . . . . . . . . . . . 129

A.10 The template used for each Human Intelligence Task (HIT) on Mechanical Turk. 130
A.11 Follow-up questions used for each annotated coreference link. . . . . . . . . . . 130

B.1 Data mixture in AMBER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.2 Model architecture for AMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xix





Chapter 1

Introduction

Equipped with the strong power of neural network models, modern NLP systems excel particularly
in recognizing and extracting information content from text documents, as demonstrated by the
prosperity and development in the field of Information Extraction. Yet there still exist many
challenges for machines to understand the semantics of human language. In this thesis, we will
delve into the semantics from the angle of discourse analysis, focusing on phenomena around
anaphora and key discourse elements, particularly events.

Events are crucial discourse elements in natural language, playing a vital role in semantic
understanding due to their complex structures that interconnect various parts of discourse. They
interact with other discourse elements to form diverse structures, making them essential building
blocks of documents and key to the process of document understanding. Textual realization of
events and entities serves as the main medium connecting to the underlying world. We believe
analyzing how models handle or parse them can deepen our understanding of computational
methods for language understanding.

Broadly, event semantics are closely related to many problems in the field of Natural Language
Processing, which involves creating structures to connect the information pieces in discourse (e.g.,
Semantic Role Labeling, Discourse Parsing) and inferring implicit information from the surface
text (e.g., ellipsis of verbs, implicit arguments). Events play interesting bridging roles in these
structures, providing inference and connection mechanisms among discourse elements.

1.1 Motivation
Understanding event structures in natural language is a fundamental challenge in the field of
Natural Language Processing (NLP). The central role of events makes them crucial for improving
the performance of NLP systems and serves as a lens through which many interesting linguistic
phenomena can be studied. This is still true in the era of LLM, as to be demonstrated in §8.

The motivation for studying event semantics is twofold: firstly, event semantics are crucial for
better text understanding; secondly, the central role of events makes them an excellent candidate
for interpreting how powerful models, such as large language models (LLMs), function. More
specifically, we summarize the reasons as follows:

1. Semantic Understanding: Events encapsulate essential semantic information, including
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participants, time, and location. By analyzing event structures, we can capture nuanced
meanings and relationships that are crucial for comprehensive semantic understanding.

2. Complex Interactions: Events interact with many other discourse elements. These inter-
actions form diverse structures, as represented in tasks like coreference, event sequencing
and elliptical resolution. Understanding these interactions enhances our ability to predict
and analyze event structures accurately. This allows us to develop advanced models that
leverage rich interactions, such as methods like joint prediction.

3. Understanding Data: Data is always a key theme in NLP and AI in general. Scaling expert-
annotated datasets for event analysis is costly and time-consuming. Studying event structures
motivates the development of scalable data annotation methods, such as crowdsourcing
and indirect supervision, to increase data availability. This scalability is crucial for training
robust and capable models, or for evaluating models and understanding their behaviors.

4. Interpretability and Transparency: Understanding how models process semantics in-
ternally is important for interpretability in AI systems. Event semantics in particular
provides us linguistic tools and datasets for us to uncover the mechanisms behind semantics
processing. This understanding is essential for guiding the improvement of current AI
systems. By delving into the intricate event structures, we can develop models that more
accurately capture the complexities of human language, leading to more robust and reliable
AI applications.

In summary, studying event structures is motivated by their central role in semantic under-
standing, and the intricate interactions they form with other discourse elements. The complexity
of these structures presents challenges at predicting multiple interacting structures together, but
also offers opportunities to leverage these interactions and deepen our understanding of language
phenomena and potential limitation of models.

1.2 Structures and Problems Related to Event Semantics
Building upon the motivation to study event semantics, we now delve into the specific structures
and problems associated with event semantics in more detail.

In an underlying world (real or imaginary), we consider the static configuration of entities and
their properties as states. Events are processes that involve a change of states. For example, a
starting state may be a vase placed on top of a table. If the vase falls from the table, its physical
location changes. This change of state can be called the ”fall” event.

In text documents, events are typically realized as or referred to by spans of text, known as
Event Mentions or Event Nuggets. The structures around textual event mentions are very rich.
They may be connected to a location, a time interval, and several participants. Event mentions may
also interact with one another. Another crucial aspect of event semantics involves the concept of
event arguments. Event arguments are the participants, properties, and other contextual elements
associated with an event.

Events are important discourse units that form the backbone of our communication. They
play various roles in documents, with some being more central to the discourse by connecting
other entities and events or providing key information of a story, while others are less relevant
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and not easily identifiable by NLP systems. Hence, it is crucial to quantify the ”importance” of
events. For example, in a news excerpt describing a debate around a jurisdiction process, the
event ”trial” is central as the main discussion topic, while ”war” is not. Researchers recognize
the need to identify central events in applications such as detecting salient relations [223] and
identifying the climax in storylines [208]. The salience of discourse units is important for language
understanding tasks, including document analysis [14], information retrieval [221], and semantic
role labeling [40]. Thus, proper models for finding important events are desired. This task of event
salience detection aims to find events that are most relevant to the main content of documents.

Humans often omit information from utterances to avoid redundancy when the context is clear
enough to resolve the missing parts. Two example problems related to event semantics are Verb
Phrase Ellipsis (VPE) and Implicit Argument Detection (IAD). Both can be viewed as forms
of cross-sentence ellipsis resolution or cross-sentence anaphora problems, where we need to find
a phrase to be anaphoric to the elliptical slot. The key difference is that the missing information
in VPE is part of the predicate/event mention, while the missing information in IAD is the event
argument.

Due to their connection with arguments, event semantics play a crucial role in phenomena
related to other discourse elements. In the Winograd Schema Challenge [113], the resolution
of pronouns often depends on changing one verb (one event predicate). Understanding how the
events described in the sentences influence the referential properties of the pronouns is a very
interesting problem. We will provide a pilot study on this topic in §8.

Various types of relations can be established between events. Events may collectively form
larger structures. Analogous to the entity coreference problem, the same event can be represented
by multiple text spans, necessitating the resolution of coreference to connect these mentions,
which is potentially helpful for completing the information of an event. Another formulation is
Schank’s script theory [184], which suggests that information is centered around event sequences,
enabling language understanding and inference. Many event structures are related to Schank’s
script. For instance, the ”subevent” relation proposed in [101] organizes events into script clusters.
The TempEval tasks [202] consider the temporal ordering of events. Following these directions,
we proposed a new task named Event Sequencing for TAC KBP 2017, which aims at ordering
events from text documents that belong to the same script. Both clustering events into the same
script and event ordering are required in the task.

This thesis presents our study on these various structures related to event semantics. Below,
we provide a brief formulation of the tasks about these structures:

Detection of Event Mention, Event Nuggets, Predicates. A first task in event semantics is the
detection and classification of event mentions, also known as event nuggets. This task involves
identifying spans of text that refer to events and then classifying these mentions into predefined
event types. We follow the task definition used in the TAC-KBP event track evaluations [142, 143,
144], where each event mention is also assigned a realis attribute indicating its nature: ACTUAL
(events that actually occurred), GENERIC (mentions of the event in general), or OTHER (other
variations). This task is crucial because accurately identifying and classifying event mentions
lays the foundation for further event-centric analyses, such as understanding event arguments and
event salience. An example of event nugget annotation is shown in Figure 1.1.
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Figure 1.1: An example event nugget annotation

Verb Phrase Ellipsis. VPE is an anaphoric process where a verbal constituent is partially or
totally unexpressed but can be resolved through an antecedent in the context. This phenomenon
poses significant challenges for natural language processing because the missing verbal elements
need to be inferred from surrounding text. For example, in the sentence ”His wife also [works
for the paper], as did his father,” the light verb did represents the verb phrase ”works for
the paper.” Identifying and resolving these elliptical structures is crucial for accurate semantic
interpretation and text understanding. VPE requires models that can recognize and interpret
context to reconstruct the missing verbal information, and locate the phrase spans accurately.

Argument Extraction and Implicit Argument Detection (IAD) Argument Extraction involves
identifying the participants, properties, and other discourse elements associated with an event.
Traditional argument extraction focuses on identifying these elements within a single sentence.
IAD is a sub-problem of event argument extraction that focuses on finding arguments mentioned
across sentence boundaries. This task is akin to implicit semantic role labeling (SRL), where
the goal is to identify argument spans that fill the roles of frames. Event arguments often extend
beyond sentence boundaries, introducing non-local or implicit arguments at the document level.
For instance, in the sentence ”The new computer cost 3000 dollars, while the old one cost 1000
dollars. Nevertheless, he still bought the more expensive one,” the money argument for the
purchase event, triggered by ”bought,” appears in the previous sentence. Detecting these implicit
arguments is essential for comprehensive event understanding and accurate event argument
modeling, requiring systems to effectively utilize broader context beyond individual sentences.

Event Salience Detection. The task of event salience detection aims to identify events that
are most relevant to the main content of documents and the events that author would like to
emphasize. These events are often central to the discourse, connecting other entities and events
or providing key information for a story. For example, in a news excerpt describing a debate
around a jurisdiction process, the event ”trial” is central as the main discussion topic, while
”war” is not. Recognizing central events helps improve the performance of various applications,
such as detecting salient relations [223], identifying climaxes in storylines [208], semantic role
labeling [40], or information retrieval [221].

Event Coreference and Quasi Coreference. Coreference resolution, the task of linking surface
mentions to their underlying discourse entities, is an important task in natural language processing.
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Most of the early work focused on coreference of entity mentions. The definition of event
coreference is naturally similar to that of entity coreference. However, we would like to highlight
the Quasi-Identity problem. That is, some of event relations exhibit subtle deviation from the
perfect identity of events [101]. Quasi-identity occurs when event mentions are related but do
not fully match in all aspects, making the task of coreference resolution more complex. Studies
has discovered that distinguishing subevent and coreference relations is crucial for anaphora
resolution[101, 217]. There are several types of quasi-identity that to be considered, we propose
the new Spatiotemporal Continuity category during our crowdsourincg experiments in §7:

1. Exact Coreference Cluster and Hopper: In typical coreference literature, multiple refer-
ences to the same underlying subject matter are easily considered coreferential, sharing an
exact identity. However, this becomes tricky since stricter approaches to event coreference
would require all event features to be identical. This approach cannot handle certain cases.
For instance, two reports about the same terrorist incident may differ in the number of
perpetrators, especially in the immediate aftermath of the event when facts are still being
uncovered. Event hoppers [188] relax this requirement by allowing coreference of two
events that are intuitively the same, even though certain features may differ. While this
flexibility addresses the aforementioned annotation problem, it also makes the annotation
task more challenging, necessitating the expertise of trained annotators.

2. Subevent Relation: This occurs when one event is a component or part of a larger event.
For example, ”the trial” might include subevents such as ”the hearing” or ”the verdict,”
which are part of the overall trial event but represent distinct phases or components.

3. Membership Relation: This type of quasi-identity involves events that belong to a common
category or group but are not identical. For instance, multiple incidents of ”protests” in
different cities may be related as members of a broader category of events but are not the
same event.

4. Spatiotemporal Continuity: In this thesis, our crowdsourcing workflow (§7) allowed us to
empirically identify a new type of quasi-identity, which we term spatiotemporal continuity
after [213]. This occurs when an event gradually evolves over space and time, leading
to cases of partial coreference. For example, the ”Haitian cholera outbreak” can be seen
as a single extended event that unfolds across different regions and periods, resulting in
mentions that share a spatiotemporal connection but are not identical.

Winograd Schema. The Winograd Schema Challenge [113] is a benchmark task designed to
evaluate a system’s ability to understand context and resolve ambiguous pronouns. Each schema
consists of a pair of sentences that differ by only one or two words and contain a pronoun whose
reference is altered by this small change. For example, in the sentence ”The city councilmen
refused the demonstrators a permit because they [feared/advocated] violence,” the pronoun ”they”
could refer to either the city councilmen or the demonstrators, depending on whether the verb is
”feared” or ”advocated.” Resolving such ambiguities often requires understanding the key event
and its commonsense implications. The fact that a subtle change can cause a significant difference
in prediction makes the Winograd Schemas particularly suitable for analyzing how well a model
handles semantics.
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Figure 1.2: There are many relations between event mentions. Above: The event relations shown
as a Directed Graph; Below: The actual event mentions in text annotated by the relations. Red
lines are coreference links; solid blue arrows represent Subevent relations; dotted green arrows
represent After relations.

Event Sequencing. As the name suggests, Event Sequencing puts events in logical orders. The
task of event sequencing is related to early linguistic theory such as Schank’s scripts [184], which
suggest that humans organize information through procedural data structures that reassemble
sequences of events. For example, the sequence of verbs order, eat, pay, leave may trigger the
restaurant script. Humans use common sense to reason about the typical ordering of these events
(e.g., order should be the first event, leave should be the last event). Event Sequencing is highly
related to Event Quasi-Identity/Coreference problems. It connects with many concepts with the
Quasi-Identity framework. The key relation, AFTER relation, is defined between event hoppers.
As show in Figure 1.2, the event fired and the hopper (killed2/killed3) forms an AFTER relation,
and both are subevent of strikes2

1. Further, it is worth noting that an event sequence often exhibit
as subevents of some other events in text articles, such as the chain fired, killed2/killed3 are
subevents of strikes2. However, this is not always guaranteed, as various other graph structures
can be formed. The Event Sequencing task requires one to identify events within the same script
chain and classify their logical orders. The key relation type in a event sequence is “AFTER”. The
AFTER relation connect events that follow the script order. For example, the event order should
be followed by eating, reflecting a natural sequence of activities in a restaurant script. While the
Event Sequencing task might seem similar to a temporal ordering task [169], it focuses on the

1Note that fired and strikes2 should be considered as their singleton hoppers, details are omitted in the figure.
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logical and script order rather than time span issues (e.g., whether two events overlap in time or if
one event’s end time is earlier than another’s).

1.3 Approach and Thesis Outline
At a high level, this thesis tackles the problems through two primary directions. In the first part, we
present algorithms for decoding various event structures, primarily using supervised settings with
expert-annotated data. However, the amount of training data available for each task is limited, and
the datasets typically cover small, focused domains because these tasks are difficult to annotate,
even for humans. Moreover, many semantic phenomena, such as different types of coreference or
relations between events and entities, are not explicitly articulated in regular human utterances
and thus require explicit annotation.

On the other hand, a large amount of training data is often necessary for learning-based systems
to successfully capture this knowledge. Limited training data results in systems that struggle to
generalize. Supervised methods often face challenges with basic structures and intricate details,
which are far from decoding semantics. To address this, in the second part of the thesis, we
explore three different approaches to scale the data. These approaches reveal intriguing insights
and show sparks of semantics (I cannot resist to overload this term from [25]).

Part I: Supervised Structure Prediction for Event Semantics. We first present our earlier
work on several event structure prediction problems using supervised approaches, including Event
Detection (§ 2), Event Coreference (§ 3), Event Sequencing (§ 4), Ellipsis (§ 5). In this part, we
explore the rich linguistic phenomena observed regarding event mentions, such as the properties
(e.g., Realis) attached to mentions and the relations (e.g., coreference and subevents) between
them. Previous corpus studies on these problems have resulted in several annotated datasets.
Hence, we focus on developing supervised learning approaches that leverage the unique structures
of these problems.

Part II: Scaling Up Data for Event Semantics. While we have made progress in predicting
structures, like any supervised approaches, these model tend to only focus on predicting the
structures being taught. In this part, we shift our focus to scaling up the data, exploring possibilities
from three angles. These approaches surface new, interesting semantic phenomena. Here is an
overview of these three angles:

1. Crowdsourcing. Crowdsourcing is one typical way to scale up annotated dataset. However,
as we previously discussed, many of these annotation tasks are often very complex to
annotate even for expert annotators (also reported by [176]), which may be too challenging
for crowdworkers. Therefore, we propose a new annotation workflow that breaks down
the annotation tasks into simpler steps. We apply this annotation approach on a cross-
document coreference setting. In addition to asking the crowdworkers on the coreference
decisions, we ask follow-up questions to collect evidence for event mention, time, location,
and participant(s) overlap between corefering mentions. This approach allows us to find a
novel type of partial identity termed as spatiotemporal continuity. We detail this approach
in §7.
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2. Indirect Supervision. Another approach to scaling data is to find large amounts of indirect
supervision signals without direct human annotation. We apply this method to study
the problem of predicting event salience in §6. Inspired by previous work on Entity
Salience [62], we use summarization as a proxy task to create an event salience dataset
using articles from the Annotated New York Times corpus [182]. Besides improving model
performance, we observe that the model learns to place script-related event mentions and
correlated event arguments into the learned embedding kernels.

3. Language Model on Coreference. Large Language Models (LLMs) are currently among
the best approaches for solving NLP problems. It is surprising to see these models excel
at complex questions, even effectively addressing many problems mentioned in this thesis.
However, some problems remain unsolved, at least for medium-sized language models. The
recent LLM performance on Winogrande [181] is an interesting example. Winogrande is
a more challenging dataset than the original Winograd Schema, created by systematically
debiasing machine-detectable embedding associations. Llama3 8B [2] scores an impressive
76.1% on Winogrande but still falls short of the human level performance of 94.0%. While
it is intriguing that language models trained on next-token prediction achieve significant
scores on such tasks, the performance gap leaves room for further study. In this chapter,
we analyze the model’s performance and the ability developmental trajectory of an LLM,
using model checkpoints from the LLM360 [124] project. Specifically, we adopt circuit
analysis methods [48, 76, 77, 93, 211] to observe what circuits are formed to solve the
Winograd Schemas. We find that while an LLM develops a few seemly robust algorithms
for some Winograd Schemas, it often solves many of them without using the proper context,
particularly in models around the FLOP level of 4e22 (a 7B model trained on 1T tokens).
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Part I

Analyzing Event Structures with Expert
Annotated Data
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In human language, events are rich discourse element in terms of their various properties
and relations with other discourse elements in the document. Events mentions are used to refer
to possible happenings or state changes in the world. Bach classifies the notions of events
or eventualities into three different types of components [8]: states (durative and changeless),
processes (durative without goal) and actions (durative with explicit goals), where the latter two
are non-states notions. Under this definition, prior computational and corpus study on events
either focus on the non-states [142] notions, or all the 3 components [3, 169]. In this thesis, we
generally focus on the non-state event mentions, and will use the term states to represent the state
eventuality explicitly.

In addition to the basic characteristics described in Bach [8], many attributes can be used
to decorate events, reflecting their semantic richness. One of the most notable properties for
event mentions are their types. Under a certain ontology for a particular domain, we can assign
some notable and salient event types to these event mentions. For instance, “price drop” and
“investment” in a business domain; “bombing” and “injury” in a military domain.

The realis status introduced in TAC KBP series of annotation, or the epistemic status in
the IC domain dataset, are used to classify whether the event expressions are corresponding to
an actual event. For instance, an event can refer to a real happening, but can also refer to a
hypothetical state, or even refer to something that might happen in the future.

Apparently these are only some examples of a large number of possible attributes, some other
attributes include event duration [158, 159, 214, 215], past or future [102] events and many more.
The study of these properties is out of the scope of this thesis. In §2, we will introduce our early
attempts on predicting event mention spans, and the event attributes including realis and epistemic.

The richness of event mentions also lies in the complex interaction and structures among them.
For example, two event mentions may be coreferential, follow a sequential/temporal relation,
or follow other anaphora relations. Furthermore, the relations between the event mentions may
reflect relations between their arguments, hence can promote inference on the entity mentions. In
this part, we will present our work on learning event coreference in §3, event sequencing in §4,
and another type of anaphora, verb phrase ellipsis, in §5.

In this part, we will focus on presenting supervised approaches on learning the event semantics.
Indirect supervision methods will be presented in Part II.
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Chapter 2

Event Detection

2.1 Introduction
Detecting the event mention instances is the first and most fundamental step for event semantic
modeling. There are different ways to mark an event mention instance in text. One can mark the
event predicate span, or the whole context of the event mention, including the arguments. In this
chapter, we describe our approach in detecting the predicate span, a task which is often referred to
as Event Nugget Detection or Event Trigger Detection. We present our system on event detection
on two languages: English and Chinese. Our featured based models are ranked as one the top
systems in the TAC-KBP evaluations [142, 143].

2.1.1 Event Mention Detection Task
An event nugget detection task normally requires a system to identify spans of text the refers
to an event mention, and then classify them as one of the predefined event types. We follow
the task definition in TAC-KBP event track evaluations [142, 143, 144], where each mention is
additionally assigned with a realis attribute of ACTUAL (events that actually occurred), GENERIC
(mentions of the event in general) or OTHER (other variations). An example annotation is shown
in Figure 2.1.

Limited by resources, event detection datasets are normally limited to a small scope. For
example, in all the RichERE annotations, there are only 38 type-subtypes, as listed in Table 2.1.

Figure 2.1: An example event nugget annotation
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Type Subtype Type Subtype Type Subtype

Business Start-Org Life Divorce Justice Release-Parole
Business End-Org Life Injure Justice Trial-Hearing
Business Declare-Bankruptcy Life Die Justice Sentence
Business Merge-Org Transaction Transfer Ownership Justice Fine
Conflict Attack Transaction Transfer Money Justice Charge-Indict
Conflict Demonstrate Transaction Transaction Justice Sue
Contact Meet Movement Transport-Person Justice Extradite
Contact Correspondence Movement Transport-Artifact Justice Acquit
Contact Broadcast Personnel Start-Position Justice Convict
Contact Contact Personnel End-Position Justice Appeal
Manufacture Artifact Personnel Nominate Justice Execute
Life Be-Born Personnel Elect Justice Pardon
Life Marry Justice Arrest-Jail

Table 2.1: List of Event Types and Subtypes in the RichERE annotations

Other event related triggers in a text documents are ignored. The task of event detection is
essentially searching for domain-specific triggers.

2.2 Model for Type Classification
We consider event nugget detection as a sequence labeling task and deploy a Conditional Random
Field (CRF) model to detect mention span and event type. The CRF model is trained with the
structured perceptron [46], which is outlined in Algorithm 1. The decoding step is done using
standard Viterbi algorithm. After training, we obtain the model using the average weight variation
as described in Collins [46].

A number of “multi-tagged” mentions are annotated in the corpus, in which a mention might
have one or more event types. For instance, an event nugget “KILL” is often associated with
“Life-Die” and “Conflict-attack”. To deal with them, We simply combine multiple labels for each
mention into a single label1.

1Though this can be treated as a multi-label classification problem, however, simple concatenation only result in a
label set of 56 types, which can be easily handled
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Algorithm 1 Structured perceptron.

Input: training examples {(x(i), y(i))}Ni=1

Input: number of iterations T
Output: weight vector w

1: w← 0 ▷ Initialization.
2: for t← 1..T do
3: for i← 1..N do
4: ŷ(i) = argmaxy∈Y(x(i))w · Φ(x(i), y)

5: if ŷ(i) ̸= y(i) then
6: w← w + Φ(x(i), y(i))− Φ(x(i), ŷ(i))

return w

An event mention is normally composed by its mention trigger and the arguments. To get a list
of arguments for the event mention. We run two Semantic Role Labeling system, the PropBank
style Fanse Parser [55] and the FrameNet style Semafor Parser [197]. In addition, to reduce
sparsity, we further incorporate a few external data resources, including WordNet [72] and a set
of Brown Clustering labels trained on newswire data [191]. Lemma, part-of-speech, NER and
parsing information are all obtained through the Stanford CoreNLP system [131].

Using these resources, we employ regular linguistic features for mention type detection, which
are summarized as followed:

1. Part-of-Speech, lemma, named entity tag of words in the 2-word window of the trigger
(both side), the trigger word itself and the direct dependent words of the trigger.

2. Brown clusters, WordNet Synonym and derivative forms of the trigger.

3. Whether the words in the 5 word window match some selected WordNet senses, includ-
ing “Leader”, “Worker”, “Body Part”, “Monetary System”, “Possession”, “Government”,
“Crime” and “Pathological State”.

4. Closest named entity type.

5. Dependency features, including lemma, dependency type and part-of-speech of the child
dependencies and head dependencies.

6. Semantic role related features includes the frame name and the argument role, named entity
tag, argument head word lemma and WordNet sense (selected from the above list as well)
of the arguments.

The WordNet related features are selected following the intuition that certain category of
words are likely to imply the existence of certain events. For example, “Leader” are normally
associated with “Personnel” type. The model generalize better by selecting appropriate levels of
word sense.
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2.3 Realis
We train a separate Realis detection model using Supper Vector Machine in LIBLINEAR2. We
reuse many features from the mention detection to capture the context of these mentions. However,
we exclude most of the lexicalized features because they tend to be overfitting in our prior
experiments. We design a specific feature to capture whether the phrase containing the event
mention is quoted (if the whole sentence is quoted, we do not fire this feature).

2.4 Adapting to a Chinese Event Detection system
To extend our system to handle Chinese documents, we develop similar features for Chinese. Most
of the features can be reused without changes in the Chinese system, which includes: window
based features3, syntactic based features, entity features, head word features and SRL features.
We also use the Brown clustering features with clusters induced form Chinese Gigaword 34.

Due to the nature of Chinese language, the Chinese tokens normally contain more internal
structure and each single character in the token may convey useful semantic information. The
way how the individual characters combine will affect the semantic of the event word. This
is previously discussed in Li et al. [114] as verb structures. In other words, the position of a
character in the verb matters. For example, the character解 means “unbind” in the word解雇
(fire), but means “console” in the word劝解 (console). Following these intuition, we further add
the following character related features:

1. Whether the token contains a character.

2. The contained character and its character level Part-of-Speech.

3. The first character of the token.

4. The last character of the token.

5. Base verb structure feature as described in [114]: we use a feature to represent one of the
base verb structure. In addition to the 6 main structures proposed by Li et al. [114], we
added 3 structures for completeness: 1. No verb character found 2. The verb character is
found after 2 characters and 3. Other: any cases that are not defined above.

2.4.1 Improving Recall on Chinese
During the system development, we observe that our Chinese system suffers from serious low
recall despite all the features we added in. By following the training procedures, we hypothesize
that the annotated Chinese data is not complete (see § 2.6.2 for more discussion). As a result, our
learning algorithm will be biased by the missed events and learn incorrect negative signals. The
final model thus will be very conservative in making predictions, leading to a low recall.

We mitigate the problem by ignoring all training sentences that do not contain an event
mention, which reduce the probability of missed annotations. On our development experiments,

2https://www.csie.ntu.edu.tw/ cjlin/liblinear/
3However since the discussion forum training data are quite noisy, we restrict the POS window to 1 instead.
4http://www.cs.brandeis.edu/˜clp/conll15st/dataset.html
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we found that this simple trick can directly raise our nugget detection performance by about 3%.
The performance improvement also support our hypothesis that the Chinese dataset is indeed not
fully annotated.

2.5 Experiments
We have participated in TAC-KBP Event Nugget track 2015 and 2016 [121, 123]. We thus
follow the official evaluation setup. The TAC-KBP 2015 track provides a training corpus of 158
documents and an evaluation set of 202 documents. There are no new training data provided in
TAC-KBP 2016, thus we train our system using both the training and testing data from TAC-KBP
2015. The evaluation set of TAC-KBP 2016 contains 169 documents. The datasets are all coming
from two different genre: newswire or discussion forum. One major change in the TAC-KBP
2016 evaluation is that the types required for evaluation is reduced to 18 types, which is a subset
of the previous 38 types.

2.5.1 Evaluation Results
Here we directly report our official system performance in the evaluation workshop [142, 143].
In TAC-KBP 2015, our official event nugget performance is summarized in Table 2.4a. Our
system ranks the third place in the Span and Realis sub-score, and second in the All attribute
sub-score. In TAC-KBP 2016, our official english nugget score in Table 2.4b. Our system ranks
2nd among all the participants in terms of the final event type F1 score (Table 2.2, our system
name is LTI-CMU1). The other sub-scores are also competitive, which ranks at the top few
systems.

Prec. Recall F1

UTD1 47.66 46.35 46.99
LTI-CMU1 61.69 34.94 44.61
wip1 51.76 38.98 44.47
NYU3 41.88 47.21 44.38
SoochowNLP3 49.92 38.81 43.67
RPI-BLENDER2 44.51 39.87 42.07
SYDNEY1 46.48 30.33 36.70
Washington1 42.15 29.41 34.65
aipheshd-t161 36.83 29.28 32.62
UMBC2 37.36 27.33 31.57
HITS3 41.79 25.30 31.52
CMUML3 60.44 15.58 24.77
UI-CCG2 25.81 18.53 21.57
IHMC20161 0.69 0.52 0.59

Table 2.2: English Nugget Type System Ranking of TAC-KBP 2016
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We are a little surprise to see our English nugget detection performance drops about 13%
(span and type) comparing to from KBP 2015 to KBP 2016. However, our relative ranking is
almost unchanged. Our analysis [143] has shown that this is actually because the change in the
type set: systems on both years perform equally well (or even better in 2016) on the selected types.
In fact, the average score on these types are actually lower than the full set.

Our Chinese event detection systems also produce competitive results. The Chinese system is
the first place on all the sub-score in TAC-KBP 2016 (Table 2.3).

Prec. Recall F1

Span LTI-CMU1 56.46 39.55 46.52
UTD1 47.23 43.16 45.1
LTI-CMU3 56.19 35.35 43.4
UI-CCG1 28.34 39.61 33.04
RPI-BLENDER1 62.46 18.48 28.52

Type LTI-CMU1 50.72 35.53 41.79
UTD1 41.9 38.29 40.01
LTI-CMU3 49.7 31.26 38.38
UI-CCG1 24.01 33.55 27.99
RPI-BLENDER2 59.87 17.5 27.08

Realis LTI-CMU1 42.7 29.92 35.18
UTD1 35.27 32.23 33.68
LTI-CMU3 43.11 27.12 33.29
RPI-BLENDER2 48.46 14.16 21.92
UI-CCG1 9.65 13.49 11.25

All LTI-CMU1 38.91 27.26 32.06
UTD1 31.76 29.02 30.33
LTI-CMU3 38.54 24.25 29.77
RPI-BLENDER2 46.69 13.65 21.12
UI-CCG1 8.31 11.62 9.69

Table 2.3: Official Chinese Nugget Performance Ranking at TAC-KBP 2016.

In order to test the effect of our realis model, we evaluate its performance given gold standard
mention span and types in the training data. We report the 5-fold validation result in Table 2.5.
Note that the precision and recall are the same because the gold spans are given.

2.6 Discussions

2.6.1 Multi-Type Events
There is a small number of event types in the evaluations. Further, the possible types of double
tagging are limited by in the dataset. This is because the current annotation scheme only considers
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Precision Recall F1

Span 82.46 50.30 62.49
Type 73.68 44.94 55.83
Realis 62.09 37.87 47.05
All 55.12 33.62 41.77

(a) Official English Event Nugget Performance at
TAC-KBP 2015.

Prec. Recall F1

Span 69.82 39.54 50.49
Type 61.69 34.94 44.61
Realis 45.78 25.93 33.11
All 40.19 22.76 29.06

(b) Official English Event Nugget Performance at
TAC-KBP 2016.

Fold Precision Recall F1

1 71.68 71.63 71.66
2 64.06 64.06 64.06
3 62.07 62.07 62.07
4 72.66 72.66 72.66
5 62.21 62.21 62.21

Table 2.5: 5-fold validation for Realis detection on training data with gold span and types

a limited pool of event types. Our current solution is simply treating the double-tagged types
as a new class in classification. However, we realize there are rich phenomenon behind this. In
fact, we find the event arguments to be closely related to these different event types. For example,
a predicate “kill” may have types “Conflict.Attack” and “Life.Death”: the former one is more
related to the state of the “Attacker” while the latter one relates to the state of the “Victim”.

2.6.2 Chinese Data Annotation
We hypothesize that the Chinese datasets are not fully annotated. We take a closer look in the data
and found a number of missed event nuggets. Here we list a couple examples:

(1) 支持香港同胞争取[Personnel.Elect选举]与被[Personnel.Elect选举]权！

(2) 司务长都是骑着二八去[TransferOwnership买]菜去。

(3) 海豹行动是绝密，塔利班竟然可以预先得知？用个火箭就可以[Conflict.Attack打]下来，
这个难度也实在是太高了吧。

In the above examples, we show several event nuggets. However, mentions annotated in red
are not actually annotated in the Rich ERE datasets. Especially, in example 1, the first选举 is
annotated but the second one is not. Such inconsistencies happen a lot across the dataset. When
training with such data, the classifier will likely to be quite conservative on making event nugget
predictions. We conduct a very simple quantitative analysis by comparing the ACE 2005 Chinese
annotation against the Rich ERE Chinese annotation. Table 2.6a and Table 2.6b summarize the top
5 double-character tokens annotated in ACE and RichERE. For the most popular event mentions,
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Rich ERE annotated only a smaller percentage comparing to ACE.
In addition, we find that the most popular event nuggets are mostly single character in the

Rich ERE datasets, such as打(170),说(148),死(131),杀(118) . In fact, in top 20 most popular
event nuggets of Rich ERE, there are 17 single-character nuggets, this number is only 6 in ACE.
These single character tokens are more ambiguous comparing to a double character mention
(for example,打 can represent the action of “calling someone” or “attacking someone”, which
corresponds to very different event type. This is because language in discuss forum posts are
normally not formal. This actually challenges our event nugget systems to deal with deeper
semantic problems.

Token Annotated Total %

冲突 100 119 84.03%

访问 64 90 71.11%

受伤 53 59 89.83%

死亡 46 50 92.00%

前往 44 52 84.62%

(a) Top 5 double character mentions in ACE 2005
Dataset

Token Annotated Total %

战争 96 223 43.05%

死亡 24 33 72.73%

暗杀 22 40 55.00%

入侵 18 22 81.82%

自杀 17 33 51.52%

(b) Top 5 double character mentions in TAC-KBP
2016 Dataset
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Chapter 3

Pairwise Event Coreference and Sequencing

3.1 Introduction
Coreference resolution, the task of linking surface mentions to their underlying discourse entities,
is an important task in natural language processing. Most of the early work focused on coreference
of entity mentions. Recently, event coreference has attracted attention on both theoretical and
computational aspects. However, most event coreference work is preliminary and applied in quite
different circumstances, making comparisons difficult or impossible.

However, one aspect that makes the problem challenging is that events can form a complex
structure and relate to each other in various ways [15, 105]. In particular, some of event relations
exhibit subtle deviation from the perfect identity of events [101]. In event anaphora, subevent
relation is one of the important relations. Studies has also discovered that distinguishing subevent
and coreference relations is crucial for anaphora resolution [101, 217].

In this chapter, we first provide an overview of many prior work around event coreference
and highlights the differences in settings. The comparisons to related work in prior papers
are not really appropriate due to these differences. We then present a supervised approach to
event coreference, and describe a method for propagating information between events and their
arguments that can improve results. In our method, different argument types support different
methods of propagation. For these experiments, we annotate and use a corpus of 65 documents in
the Intelligence Community (IC) domain that contains a rich set of within-document coreference
links [101].

3.2 Related Work
Table 3.1 summarizes recent work on event coreference resolution. For the reasons below, only
one supervised system [1] and two unsupervised [16, 50] on within-document event coreference
are suitable as a basis for ongoing comparison.
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Gold standard used Cross/within Document Compatible definition Corpus

Within Cross

Lee et al. [111] ✓ ✓ ECB

Sangeetha and Arock [183] ACE mention, arguments and attributes ✓ ✓ ACE

Cybulska and Vossen [50] Mention head word ✓ ✓ IC

McConky et al. [134] ACE mention, arguments and attributes ✓ ✓ ACE

Li et al. [115] Human entity and event mention detection ✓ ✓ Unavailable

Bejan and Harabagiu [16] ✓(ACE, ECB) ✓(ECB) ✓ ECB, ACE

Chen and Ji [38] ACE mention, arguments and attributes ✓ ✓ ACE

Elkhlifi and Faiz [69] ✓ Unavailable

Naughton [147] ✓ IBC, ACE

Pradhan et al. [168] ✓ OntoNotes

Ahn [1] ACE mention, arguments and attributes ✓ ✓ ACE

Bagga and Baldwin [10] ✓ Unavailable

Table 3.1: A range of event coreference resolution work with different settings.
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3.2.1 Problem Definition
Different approaches use different definitions of the problem (see Compatible Definition column).
However, as discussed in recent linguistic studies [101, 174], the existence of different types
and degrees of coreference makes it necessary to agree on the definition of coreference before
performance can be compared. The lack of clarity about what coreference should encompass rules
out several systems for comparison. OntoNotes created restricted event coreference [168], linking
only some nominalized events and some verbs, without reporting event-specific results. Both
Naughton [147] and Elkhlifi and Faiz [69] worked on sentence-level coreference, which is closer
to the definition of Danlos [53]. However it is unclear when one sentence contains multiple event
mentions, and hence these are not comparable to systems that process more specific coreference
units.

3.2.2 Dataset and Settings
Early work by Bagga and Baldwin [10] conduct experiments only on cross-document coreference.
Recent advanced work on event coreference is by Bejan and Harabagiu [16] and Lee et al. [111]
use the ECB corpus1 (or a refined version2) to evaluate performance, which is annotated mainly
for cross-document coreference. In this corpus, within-document coreference is only very partially
annotated; most difficult coreference instances are not marked.

(1) 1. Indian naval forces came to the rescue (E1) of a merchant vessel under
attack (E3) by pirates in the Gulf of Ade on Saturday, capturing (E2) 23
of the raiders, India said (E4).

2. Indian commandos boarded the larger pirate boat, seizing 12 Somali and 11 Yemeni
nationals as well as arms and equipment, the statement said.

(2) 1. The Indian navy captured (E2) 23 piracy suspects who tried (E5) to take
over (E3) a merchant vessel in the Gulf of Aden, between the Horn of Africa and
the Arabian Peninsula, Indian officials said (E4).

2. In addition to the 12 Somali and 11 Yemeni suspects, the Indian navy seized two
small boats and “a substantial cache of arms and equipment”, the military said in a
statement.

The examples sentences are extracted from two documents from the ECB. In both documents,
event mentions appear in the first sentence are annotated once, but not in the subsequent sentences.
In example 1, we find in one of the subsequent sentences the event mention “seizing” which
should actually marked as coreferent with “capturing (E2)”. In example 2, we find a more
tricky case: the mention “seized”, which has semantics similar to “captured” but this pair
is not marked as coreference due to different patients. In cross-document settings, we also find
discrepancies between the definitions. In ECB, “attack (E3)” in example 1 is annotated as
coreferent with “take over (E3)” in example 1, which we believe is wrong: at best, the
attack is only a part of the attempt to take over the merchant vessel.

1http://adi.bejan.ro/data/ECB1.0.tar.gz
2http://nlp.stanford.edu/pubs/jcoref-corpus.zip
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Goyal et al. [87] use a distributional semantic approach on event coreference. However, they
adopt a unconventional evaluation setting. They draw from the IC corpus an equal number of
positive and negative testing examples, which is different from the natural data distribution.

3.2.3 Gold Standard Annotations
Recent work using the ACE 2005 corpus3 Ahn [1], Chen and Ji [38], Chen et al. [39], McConky
et al. [134], Sangeetha and Arock [183] agrees with our definition of coreference. However, the
ACE corpus annotations, in addition to event mentions, also include argument structures, entity
ids, and time-stamps. Most coreference systems on the ACE corpus make use of this additional
information. This makes them impossible to compare to systems that do not make this simplifying
assumption. It also makes results achieved on ACE hard to compare to results on corpora without
this additional information. Among these work, only Ahn [1] reported some results using system
generating arguments, we compare our system against it.

There are also other problems that make the comparison difficult. Li et al. [115] use a hand-
annotated web corpus, which is not publicly available for comparison. In summary, anyone
wanting to work on within-document event coreference has to obtain a corpus that is fully
annotated, that does not include additional facilitating information, whose definition of coreference
respects the theoretical considerations of partial coreference, and that has other systems freely
available for comparison. Meeting these criteria is not easy. The closest work we find is by
Cybulska and Vossen [50] and Bejan and Harabagiu [16], both adopt unsupervised methods for
event coreference. Ahn [1] also reported results on ACE by swapping gold standard annotations
with system results.We compare our system to their results on their corresponding corpus.

3.3 Corpus
Our system is trained and evaluated on the IC domain corpus, which annotates several different
event relations. Table 3.2 summarizes the corpus level statistics and the average over documents.
In this work, we focus on full coreference relations. The inter-annotator agreement among 3
annotators for full coreference is 0.614 in terms of Fleiss’ kappa [81]. For detailed definition for
the corpus, we refer readers to Hovy et al. [101]. To facilitate future research, We also report our
system results on the ACE 2005 training dataset, which contains 599 documents.

3.4 System description
Our system is almost end-to-end, except that we start with a minimal gold standard head word
annotations in order to focus on the core coreference problem. This approach is the same as
Cybulska and Vossen [50] and Bejan and Harabagiu [16]4.

3http://www.itl.nist.gov/iad/mig/tests/ace/2005/doc/
4Although Bejan and Harabagiu [16] use automatic mention detection to extend the mention set for training, they

only use true mentions of the ACE dataset at evaluation time.
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Total Avg.

Event Mention 2678 41.2

Non-elliptical Domain Event Mention 1998 30.7

Reporting Event Mention 669 10.29

Full coreference relations 1253 21.6

Subevent relations (parent-child) 455 8

Membership relations (parent-child) 161 2.9

Table 3.2: Corpus Statistics

3.4.1 Procedure
Similar to Chen et al. [39], we approach the problem first with a conventional pairwise model:

1. Supervised classification that determines the probability whether two mentions co-refer.
The classifier used in the experiment is Random Forest [22], implemented in Weka [90].

2. Clustering that processes all the pairwise scores to output the final clusters of pairs.

3. In addition, we added a third step after clustering, information is propagated between event
mentions to enrich the original feature set.

The last step tries to enrich the event representations during clustering. Typically, the infor-
mation carried from one event to its coreferent mention is about the participants (agent, patient,
etc.). When an event has been enriched by receiving information from another, it may in turn
now be linkable to a third event. The system repeats this process until no more information can
be propagated. Currently, the propagation includes two parts: 1. if one mention has missing
arguments, they will be copied over from the co-referred counterpart; 2. if both arguments are
present, information not presented in one will be copied from another.

Similarly, Lee et al. [111] show that jointly modeling references to events and entities can
boost the performance on both. We hold a similar assumption. But by focusing on events and
their arguments, we can perform propagation specific to each type of argument, for instance,
geographical reasoning as described below.

3.4.2 Features
In addition to typical lexical and discourse features, we also model an event mention with its
surface form and its arguments, including agent, patient5, and location. We use a rich set of 105
semantic features, described in table 3.3.

5Specifically, these are defined as ARG0, ARG1 in PropBank. They could be more-specific variants roles such as
experiencer, but we prefer a smaller set for simplicity.
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Agent, patient extraction and propagation

We use the semantic parser Fanse [197] to annotate the predicate arguments defined in PropBank.
For nominal events, we extract agent and patient using heuristics such as finding the token attached
to the event mention with specific words (such as “by”) and modifiers as agent (e.g., HAMAS
in HAMAS’s attack). During the propagation step, information not present in one entity can be
copied from another.

Location extraction and propagation

In contrast to agent and patient, the propagation of location information employs external infor-
mation to gain additional power. We use the Stanford Entity Recognition [79] engine to identify
location mentions. DBpedia Spotlight [136] is run to disambiguate location entities. DBpedia [7]
information, such as cities, country, and alternative names, are then injected. When the location is
not found in DBpedia, we search the mention string in GeoNames6 and use the first result with
highest Dice coefficient with the surface string. This world knowledge enriches annotation. For
example, we can now match the mention “Istanbul” with the country name “Turkey”.

3.4.3 Clustering
We conduct experiments with two simple clustering methods. The first is a pure transitive closure
that links all pairs mentions that the classification engine judges as positive. The second is the
Best-Link algorithm of Ng and Cardie [148], which links each mention to its antecedent with the
highest likelihood when the classifier judges as positive.

3.5 Evaluation

3.5.1 Evaluation Metrics
Coreference evaluation metrics have been discussed by the community for years. To enable
comparison, we report most metrics used by the CoNLL 2012 shared task [167], including
MUC [42], B-Cubed [9], entity-based CEAF [129], and BLANC [172]. Pairwise scores are used
to provide a direct view on performance.

3.5.2 Experiments and Results
We split the documents in IC corpus randomly into 40 documents for training and development,
and 25 for testing. Parameters such as the probability threshold to determine coreference are tuned
on the 40 documents using five-fold cross validation. Optimization is not done separately for
each metric. We simply use a universal classifier threshold optimized for pairwise case. During
experiment, the propagation step is actually performed for only one iteration, since no further

6http://www.geonames.org/
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information is propagated. On the ACE corpus, we simply apply the best model configuration
from IC corpus and train on 90% of the documents (539) for training and 10% for testing (60).

Table 3.3 summarizes the overall average results obtained by BestLink on both ACE and IC
corpus (BestLink consistently outperforms naively full transitive closure). We also attach three
other reported results at the end. Note that these results are not directly comparable: Cybulska and
Vossen [50] and Bejan and Harabagiu [16] use unsupervised methods, thus their reported results
are evaluated on the whole corpus; Ahn [1] also use a 9:1 train-test split, but the split might be
different with ours. A simple comparison shows that our results outperform these systems in all
metrics, which is notable because all these metrics are designed to capture the performance from
different aspects.

To interpret the results, it should also be noted that because of the existence of large number
of singleton clusters, some measures such as B3 seem to be high even using the most naive feature
set. By looking at the pairwise performance, however, we see that current best F-score is only
about 50%. There are still many challenges in event coreference.

Pairwise MUC B3 CEAF-e BLANC

IC corpus R P F R P F R P F R P F R P F
Discourse + Lexical 32.69 25.11 28.40 41.7 33.58 37.2 79.46 74.06 76.67 66.89 73.95 70.24 59.77 61.2 60.43
+ Syntactic 47.12 35.15 40.26 52.6 47.63 50.0 82.24 81.46 81.85 76.91 80.21 78.53 64.76 68.59 66.42
+ Semantic (no arguments) 51.15 42.22 46.26 54.5 49.1 51.68 82.12 82.08 82.1 74.93 78.31 76.58 65.41 69.98 67.35
+ Arguments 55.96 47.86 51.60 56.87 55.81 56.33 83.38 85.58 84.46 88.13 80.73 80.43 68.77 75.21 71.46
+ Propagation 59.04 48.27 53.11 68.72 55.5 61.44 89.28 79.89 84.33 75.14 82.9 78.83 82.28 70.77 75.06
Cybulska and Vossen [50] — — — — — — 81.0 71.0 76.0 — — — — — —

ACE corpus

This work 55.86 40.52 46.97 53.42 48.75 50.98 89.9 88.86 89.38 85.54 87.42 86.47 70.88 70.01 70.43
Bejan and Harabagiu [16] 43.3 47.1 45.1 — — — 83.4 84.2 83.8 76.9 76.5 76.7 — — —
Ahn [1] — — 43.3 — — — — — — — — — — — —

Table 3.3: Evaluation results and comparisons

3.6 Discussion
The evaluation results show that almost all types of features help to improve the performance over
all metrics rather consistently. However, preliminary error analysis shows that some events are
still clustered incorrectly even when arguments match. We argue that limitations in argument
extraction and entity coreference prevent these features from contributing directly to correct
coreference decisions. On the other hand, the results of propagation show that new information
helps to find more links but inevitably comes with a drop in precision. We consider that modeling
event and arguments holistically like Lee et al. [111] would help guide the propagation. By
inspecting the data, we hypothesize that the main benefits brought by the propagation scheme is to
match arguments of two coreferent events. If the arguments are nominal events, they will be then
marked as coreferent due to the feature “Event as Entity” (See Semantic features in table 3.4). In
the following example, if the two event mentions “planning” are marked as coreference, then the
corresponding argument “attack” will be also marked as coreference.
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(3) A member of the Islamic militant movement HAMAS suspected of planning a suicide
attack against Israel surrendered to Palestinian police here after a six-hour shootout on
Friday. HAMAS’s military wing, was on the run from both Palestinian and Israeli police
for planning anti-Israeli attacks.

This hypothesis is also in line with our observation that propagation can only be performed
for one round, because the nominal event themselves are unlikely to have other nominal events
as arguments. Such interactions between event mentions also remind us that conference can be
possibly improved by other types of event relations, such as subevent relations.

Furthermore, the system tends to merge clusters where the event mention head words are the
same because the head word feature receives a high weight in the model, even when this is not
appropriate. More work should be performed on disambiguating such difficult cases.

We show that rich linguistic features, especially event arguments, can improve event corefer-
ence performance. Argument specific information propagation further help finding new relations.
However, our proposed model is based on a simple pairwise event coreference model, which
we haven’t incorporate the structural information of the document. In the next chapter, we will
propose a structure aware model for event coreference.
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Type (counts) Feature Name Description

Discourse (5)
Sentence Distance Number of sentences between two events mentions.

Event Distance Number of event mentions between two event mentions.

Position One event is in the title, or the first sentence.

Lexical (12)
Surface Similarity Several string similarity measures computed between event

mention headwords: Dice coefficient, edit distance, Jaro
coefficient, lemma match and exact phrase match.

Modifier Similarity Dice coefficient similarity of the modifiers of the event men-
tions.

Syntactic (38)

Part Of Speech Binary features for plurality, tense, noun or verb for the event
mention head words.

Dependency The dependency label connecting the two event mentions.

Negation Whether two mention head words are both negated.

Determiner Whether the event mentions are modified by determiners

Semantic (16)

Coreference Whether the predicates are in the same entity coreference
cluster (only for nominal events).

WordNet Similarity Wu-Palmer similarity [160] of the headword pair.

Senna Embeddings Cosine similarity of event mention head word embeddings
(Senna embeddings [47]).

Distributional Distributional similarity between predicates in Goyal et al.
[87].

Verb Ocean Predicate word relations in “Verb Ocean” [43].

Semantic Frame Whether two predicates trigger the same semantic frame
(extracted by Semafor [54]).

Mention Type Predicate word type (generated by IBM Sire [82]) match.

Arguments (34)

Surface Dice coefficient and Wu-Palmer similarity between argu-
ment pairs;

Coreference Entity coreference between argument pairs; Numeric word
match between the argument pairs.

Existence Whether each argument slot is instantiated.

Location Containment and alternatives name match between the lo-
cation arguments based on geographical resources such as
DBpedia [7] and GeoNames.

Table 3.4: List of features (with counts) in the pairwise model. Entity coreference are from the
Stanford Entity Coreference Engine [110].
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Chapter 4

Graph Based Event Coreference and
Sequencing

4.1 Introduction
The rich relations among the textual event mentions help connect them. The mentions then
collectively convey the meaning of the narrative. In the previous chapter, we introduce a pairwise
approach for event coreference. However, the simple pairwise model does not consider the
structural constraints. In this chapter, we propose a graph based approach, and apply them to two
different types of relation: Event Hopper Coreference (EH) and Event Sequencing (ES).

Event Hopper Coreference: In this chapter, we use the dataset of the TAC-KBP dataset,
that defines a new Event Hopper Coreference task [144]: Two event mentions are considered
coreferent if they refer to the conceptually same underlying event, even if their arguments are
not strictly identical. For example, mentions that share similar temporal and location scope,
though not necessarily the same expression, are considered to be coreferent (Attack in Baghdad
on Thursday vs. Bombing in the Green Zone last week). This means that the event arguments of
coreferential events mentions can be non-coreferential (18 killed vs. dozens killed), as long as
they refer to the same event, judging from the available evidence.

Event Sequencing: The coreference relations build up events from scattered mentions. On
the basis of events, various other types of relations can then be established between them. The
Event Sequencing task studies one such relation. The task is motivated by Schank’s scripts [184],
which suggests that human organize information through procedural data structures, reassembling
sequences of events. For example, the list of verbs order, eat, pay, leave may trigger the restaurant
script. A human can conduct reasoning with a typical ordering of these events based on common
sense (e.g., order should be the first event, leave should be the last event).

The ES task studies how to group and order events from text documents belonging to the same
script. Figure 4.1 shows some annotation examples. Conceptually, event sequencing relations
hold between the events, while coreference relations hold between textual event mentions. Given a
document, the ES task requires systems to identify events within the same script and classify their
inter-relations. These relations can be represented as labeled Directed Acyclic Graphs (DAGs).
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Figure 4.1: Example of Event Coreference and Sequence relations. Red lines are coreference
links; solid blue arrows represent Subevent relations; dotted green arrows represent After relations.
This figure is taken from the dataset annotated by annotators, the links are different from Fig. 1.2
annotated by the authors.

There are two types of relations1: After relations connect events following script orders (e.g.
order followed by eating); Subevent relations connect events to a larger event that contains them.
In this paper, we focus only on the After relations.

Since script-based understanding is built in the ES task, it has some unique properties compar-
ing to pure temporal ordering: 1. event sequences from different scripts provide separate logical
divisions of text, while temporal ordering considers all events to lie on a single timeline; 2. tempo-
ral relations for events occurring at similar time points may be complicated. Script-based relations
may alleviate the problem. For example, if a bombing kills some people, the temporal relation
of the bombing and kill may be “inclusion” or “after”. This is considered an After relation in
ES because bombing causes the killing.

For structure prediction, decoding — recovering the complex structure from local decisions —
is one of the core problems. The most successful decoding algorithm for coreference nowadays is
mention ranking based [20, 64, 112]. These models rank the antecedents (mentions that appear
earlier in discourse) and recover the full coreference clusters from local decisions. However,
unlike coreference relations, sequencing relations are directed. Coreference decoding algorithms
cannot be directly applied to such relations (§4.3.1). To solve this problem, we propose a unified
graph-based framework that tackles both event coreference and event sequencing. Our method
achieves state-of-the-art results on the event coreference task (§4.4.4) and beats an informed
baseline on the event sequencing task (§4.4.5). Finally, we analyze the results and discuss the
difficult challenges for both tasks (§4.5). Detailed definitions of these tasks can be found in the
corresponding task documents2.

1Detailed definition of relations can be found in http://cairo.lti.cs.cmu.edu/kbp/2016/after/
2http://cairo.lti.cs.cmu.edu/kbp/2017/event/documents
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4.2 Related Work
Many researchers have worked on event coreference tasks since Humphreys et al. [104]. In
the previous chapter, we have summarized a variety of work under different settings on event
coreference. Recent advances in event coreference have been promoted by the standardized
annotation corpora. A lot of work is conducted on the popular ACE corpus [35, 36, 38, 39, 183].
Unlike the TAC KBP setting, the definition of event coreference in the ACE corpus requires strict
argument matching.

In this chapter, we mainly follow the TAC-KBP event nugget tasks [142]. There is a small but
growing amount of work on conducting event coreference on the TAC-KBP datasets [127, 128,
163]. The TAC dataset uses a relaxed coreference definition comparing to other corpora, requiring
two event mentions to intuitively refer to the same real-world event despite differences of their
participants.

For event sequencing, there are few supervised methods on script-like relation classification
due to the lack of data. To the best of our knowledge, the only work in this direction is by Araki
et al. [4]. This work focuses on the other type of relations in the event sequencing task: Subevent
relations. There is also a rich literature on unsupervised script induction [30, 41, 78, 165, 177]
that extracts scripts as a type of common-sense knowledge from raw documents. The focus of
this work is to make use of massive collections of text documents to mine event co-occurrence
patterns. In contrast, our work focuses on parsing the detailed relations between event mentions
in each document.

Another line of work closely related to event sequencing is to detect other temporal relations
between events. Recent computational approaches for temporal detection are mainly conducted
on the TimeBank corpus [169]. There have been several studies on building automatic temporal
reasoning systems [29, 58, 201]. In comparison, the Event Sequencing task is motivated by the
Script theory, which places more emphasis on common-sense knowledge about event chronology.

4.3 Model

4.3.1 Graph-Based Decoding Model
In the Latent Antecedent Tree (LAT) model popularly used for entity coreference decoding [20,
73], each node represents an event mention and each arc a coreference relation, and new mentions
are connected to some past mention considered most similar. Thus the LAT model represents
the decoding structure as a tree. This can represent any coreference cluster, because coreference
relations are by definition equivalence relations3.

In contrast, tree structures cannot always fully cover an Event Sequence relation graph, because
1. the After links are directed, not symmetric, and 2. multiple event nodes can link to one node,
resulting in multiple parents.

To solve this problem, we extend the LAT model and propose its graph version, namely
the Latent Antecedent Graph (LAG) model. Figure 4.2 contrast LAT and LAG with decoding
examples. The left box shows two example decoded trees in LAT, where each node has one single

3An equivalence relation is reflexive, symmetric and transitive.
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Figure 4.2: Latent Tree Model (left): tree structure formed by undirected links. Latent Graph
Model (right): a DAG form by directed links. Dashed red links highlight the discrepancy between
prediction and gold standard. The dotted yellow link (bottom right) can be inferred from other
links.

parent. The right box shows two example decoded trees in LAG, where each node can be linked
to multiple parents.

Formally, we define the series of (pre-extracted) event mentions of the document as M =
{m0,m1, . . . ,mn}, following their discourse order. m0 is an artificial root node preceding all men-
tions. For each mention mj , let Aj = {m0,m1, . . . ,mj−1} be the set of its potential antecedents:
Let A denotes the set of antecedents for all the mentions in the sequence {A0, A1, . . . , An}.
The two tasks in question can be considered as finding the appropriate antecedent(s) from A.
Similarly, we define the gold antecedent set Ã = {Ã0, Ã1, . . . , Ãn}, where Ãi represent the
set of antecedents of mi allowed by the gold standard. In the coreference task, Ãi contains all
antecedents that are coreferent with mi. In the sequencing task, Ãi contains all antecedents that
have an After relation to mi.

We can now describe the decoding process. We represent each arc as ⟨mi,mj, r⟩(i < j),
where r is the relation name. The relation direction can be specified in the relation name r (e.g.
r can be after.forward or after.backward). Further, an arc from the root node m0 to node mj

represents that mj does not have any antecedent. The score of the arc is the dot product between
the weight parameter w⃗ and a feature vector Φ(⟨mi,mj, r⟩), where Φ is an arc-wise feature
function. The decoded graph z can be determined by a set of binary variables z⃗, where z⃗ijr = 1 if
there is an arc ⟨mi,mj, r⟩ or 0 otherwise. The final score of z is the sum of scores of all arcs:

score(z) =
∑
i,j,r

z⃗ijrw⃗ · Φ(⟨mi,mj, r⟩) (4.1)

The decoding step is to find the output ẑ that maximizes the scoring function:
ẑ = arg max

z∈Z(A)
score(z) (4.2)
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where Z(A) denotes all possible decoding structures given the antecedent sets A. It is useful to
note that the decoding step can be applied in the same way to the gold antecedent set Ã.

Algorithm 2 shows the Passive-Aggressive training algorithm [49] used in our decoding
framework. Line 7 decodes the maximum scored structure from all possible gold standard
structures using the current parameters w⃗. Intuitively, this step tries to find the “easiest” correct
graph — the correct graph with the highest score — for the current model. Several important
components remain unspecified in algorithm 2: (1) the decoding step (line 5, 7); (2) the match
criteria: whether to consider the system decoding structure as correct (line 6); (3) feature delta:
computation of feature difference (line 8); (4) loss computation (line 9). We detail the actual
implementation of these steps in §4.3.1.

Algorithm 2 PA algorithm for training
Input: Training data D, number of iterations T

1:
Output: Weight vector w⃗

2:
3: w⃗ = 0⃗;
4: ⟨A, Ã⟩ ∈ D;
5: for do t← 1..T ẑ = argmaxZ(A) score(z)

6: if ¬Match(ẑ, Ã) then
7: z̃ = argmaxZ(Ã) score(z)
8: ∆ = FeatureDelta(z̃, ẑ)

9: τ = loss(z̃,ẑ)
||∆||2

10: w = w + τ∆
return w

Minimum Decoding Structure

Similar to the LAT model, there may be many decoding structures representing the same con-
figuration. In LAT, since there is exactly one link per node, the number of links in different
decoding structures is the same, hence comparable. In LAG, however, one node is allowed to link
to multiple antecedents, creating a potential problem for decoding. For example, consider the
sequence m1

after−−→ m2
after−−→ m3, both of the following structures are correct:

1. ⟨m1,m2, after⟩, ⟨m2,m3, after⟩
2. ⟨m1,m2, after⟩, ⟨m2,m3, after⟩, ⟨m1,m3, after⟩
However, the last relation in the second decoding structure can actually be inferred via

transitivity. We do not intend to spend the modeling power on such cases. We empirically
avoid such redundant cases by using the transitive reduction graph for each structure. For
a directed acyclic graph, a transitive reduction graph contains the fewest possible edges that
have the same reachability relation as the original graph. In the example above, structure 1 is
a transitive reduction graph for structure 2. We call the decoding structures that corresponding
to the reduction graphs as minimum decoding structures. For LAG, we further restrict Z(A) to
contain only minimum decoding structures.
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Training Details in Latent Antecedent Graph

In this section, we describe the decoding details for LAG. Note that if we enforce a single
antecedent for each node (as in our coreference model), it falls back to the LAT model [20].

Decoding: We use a greedy best-first decoder [148], which makes a left-to-right pass over
the mentions. The decoding step is the same for line 5 and 7. The only difference is that we will
use gold antecedent set (Ã) at line 7. For each node mj , we keep all links that score higher than
the root link ⟨0,mj, r⟩.

Cycle and Structure Check: Incremental decoding a DAG may introduce cycles to the graph,
or violate the minimum decoding structure criterion. To solve this, we maintain a set R(mi) that
is reachable from mi during the decoding process. We reject a new link (⟨mj,mi⟩ if mj ∈ R(mi))
to avoid cycles. We also reject a redundant link (⟨mi,mj⟩ if mj ∈ R(mi)) to keep a minimum
decoding structure. Our current implementation is greedy, we leave investigations of search or
global inference based algorithms to future work.

Selecting the Latent Event Mention Graph: Note that sequence relations are on the event
level. Given a unique event graph, it may still correspond to multiple mention graphs. In our
implementation, we use a minimum set of event mentions to represent the full event graph by
taking one single mention from each event. Following the “easiest” intuition, we select the single
mention that will result in the highest score given the current feature weight w.

Match Criteria: We consider two graphs to match when their inferred graphs are the same.
The inferred graph is defined by taking the transitive closure of the graph and propagate the links
through the coreference relations. For example, in Figure 4.1, the mention fired will be linked
to two killed mentions after propagation.

Feature Delta: In structural perceptron training [46], the weights are updated directly by the
feature delta. For all the features f̃ of the gold standard graph z̃ and features f̂ of a decoded graph
ẑ, the feature delta is simply: ∆ = f̃ − f̂ . However, a decoded graph may contain links that are
not directly presented but inferable from the gold standard graph. For example, in Figure 4.2, the
prediction graph has a link from M5 to M1 (the orange arc), which is absent but inferable from
the gold standard tree. If we keep these links when computing ∆, the model does not converge
well. We thus remove the features on the inferable links from f̂ when computing ∆.

Loss: We define the loss to be the number of different edges in two graphs. Following
Björkelund and Kuhn [20], we further penalize erroneous root attachment: an incorrect link to
the root m0 adds the loss by 2. For example, in Figure 4.2 the prediction graph (bottom right)
incorrectly links m4 to Root and misses a link to m3, which cause a total loss of 3. In addition, to
be consistent with the feature delta computation, we do not compute loss for predicted links that
are inferable from the gold standard.

4.3.2 Features
Event Coreference Features

For event coreference, we design a simple feature set to capture syntactic and semantic similarity
of arcs. The main features are summarized in Table 4.1. In the TAC KBP 2015 coreference task
setting, the event mentions are annotated with two attributes. There are 38 event types and subtype
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Head Headword token and lemma pair, and whether they are the same.

Type The pair of event types, and whether they are the same.

Realis The pair of realis types and whether they are the same.

POS POS pair of the two mentions and whether they are the same.

Exact Match Whether the 5-word windows of the two mentions match exactly.

Distance Sentence distance between the two mentions.

Frame Frame name pair of the two mentions and whether they are the same.

Syntactic Whether a mention is the syntactic ancestor of another.

Table 4.1: Coreference Features. Parsing is done using Stanford CoreNLP [131]; frame names
are produced by Semafor [55].

pairs (e.g., Business.Merge-Org, Conflict.Attack). There also 3 realis type: events that actually
occurred are marked as Actual; events that are not specific are marked as Generic; other events
such as future events are marked as Other. For these two attributes, we use the gold annotations
in our feature sets.

Event Sequencing Features

An event sequencing system needs to determine whether the events are in the same script and
order them. We design separate feature sets to capture these aspects: the Script Compatibility set
considers whether mentions should belong to the same script; the Event Ordering set determines
the relative ordering of the mentions. Our final features are the cross products of features from the
following 3 sets.

1. Surface-Based Script Compatibility: these features capture whether two mentions are
script compatible based on the surface information, including:

• Mention headword pair.
• Event type pair.
• Whether two event mentions appear in the same cluster in Chambers’s event schema

database [31].
• Whether the two event mentions share arguments, and the semantic frame name of the

shared argument (produced by the Semafor parser [55]).

2. Discourse-Based Script Compatibility: these features capture whether two event mentions
are related given the discourse context.

• Dependency path between the two mentions.
• Function words (words other than Noun, Verb, Adjective and Adverb) in between the
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two mentions.
• The types of other event mentions between the two mentions.
• The sentence distance of two event mentions.
• Whether there are temporal expressions in the sentences of the two mentions, extracted

from the AGM-TMP slot using a PropBank parser [197]

3. Event Ordering: this feature set tries to capture the ordering of events. We use the discourse
ordering of two mentions (forward: the antecedent is the parent; backward: the antecedent
is the child), and temporal ordering produced by CAEVO [29].

Taking the after arc from fired to killed in Figure 4.1 as an example, a feature after the
cross product is: Event type pair is Conflict.Attack and Life.Die, discourse ordering is backward,
and sentence distance is 0.

4.4 Experiments

4.4.1 Dataset
We conduct experiments on the dataset released in Text Analysis Coreference (TAC-KBP) 2017
Event Sequencing task (released by LDC under the catalog name LDC2016E130). This dataset
contains rich event relation annotations, with event mentions and coreference annotated in TAC-
KBP 2015, and additional annotations on Event Sequencing4. There are 158 documents in the
training set and 202 in the test set, selected from general news articles and forum discussion
threads. The event mentions are annotated with 38 type-subtype and 3 realis status (Actual,
Generic, Other). Event Hopper, After, and Subevent links are annotated between event mentions.
For all experiments, we develop our system and conduct ablation studies using 5-fold cross-
validation on the training set, and report performance on the test set.

4.4.2 Baselines and Benchmarks
Coreference: we compare our event coreference system against the top performing systems from
TAC-KBP 2015 (LCC, UI-CCG, and LTI). In addition, we also compare the results against two
official baselines [142]: the Singleton baseline that put each event mention in its own cluster and
the Match baseline that creates clusters based on mention type and realis status match.
Sequencing: This work is an initial attempt to this problem, so there is currently no comparable
prior work on the same task. We instead compare with a baseline using event temporal ordering
systems. We use a state-of-the-art temporal system named Caevo [29]. To make a fair comparison,
we feed the gold standard event mentions to the system along with mentions predicted by Caevo5.
However, since the script-style After links are only connected between mentions in the same
script, directly using the output of Caevo produces very low precision. Instead, we run a stronger
baseline: we take the gold standard script clusters and then only ask Caevo to predict links within
these clusters (Oracle Cluster + Temporal).

4http://cairo.lti.cs.cmu.edu/kbp/2016/after/
5We keep the mentions predicted by Caevo because its inference may be affected by these mentions.
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4.4.3 Evaluation Metrics
Evaluating Event Coreference: We evaluate our results using the official scorer provided by
TAC-KBP, which uses 4 coreference metrics: BLANC [172], MUC [42], B3 [9] and CEAF-E [129].
Following the TAC KBP task, systems are ranked using the average of these 4 metrics.
Evaluating Event Sequencing: The TAC KBP scorer evaluates event sequencing using the metric
of the TempEval task [200, 202]. The TempEval metric calculates special precision and recall
values based on the closure and reduction graphs:

Precision =
|Response− ∩Reference+|

|Response−|
Recall =

|Reference− ∩Response+|
|Reference−|

where Response represents the After link graph from the system response and Reference
represents the After link graph from the gold standard. G+ represents the graph closure for
graph G and G− represents the graph reduction for graph G. As preprocessing, relations are
automatically propagated through coreference clusters (currently using gold standard clusters).
The final score is the standard F-score: geometric mean of the precision and recall values.

4.4.4 Evaluation Results for Event Coreference
The test performance on Event Coreference is summarized in Table 4.2. Comparing to the top 3
coreference systems in TAC-KBP 2015, we outperform the best system by about 2 points absolute
F-score on average. Our system is also competitive on individual metrics. Our model performs
the best based on B3 and CEAF-E, and is comparable to the top performing systems on MUC and
BLANC.

Note that while the Matching baseline only links event mentions based on event type and
realis status, it is very competitive and performs close to the top systems. This is not surprising
since these two attributes are based on the gold standard. To take a closer look, we conduct an
ablation study by removing the simple match features one by one. The results are summarized
in Table 4.3. We observe that some features produce mixed results on different metrics: they
provide improvements on some metrics but not all. This is partially caused by the different
characteristics of different metrics. On the other hand, these features (parsing and frames) are
automatically predicted, which make them less stable. Furthermore, the Frame features contain
duplicate information to event types, which makes it less useful in this setting.

Besides the presented features, we have also designed features using event argument. However,
we do not report the results since the argument features decrease the performance on all metrics.

4.4.5 Evaluation Results for Event Sequencing
The evaluation results on Event Sequencing is summarized in Table 4.4. Because the baseline
system has access to the oracle script clusters, it produces high precision. However, the low recall
value shows that it fails to produce enough After links. Our analysis shows that a lot of After
relations are not indicated by clear temporal clues, but can only be solved with script knowledge.
In Example 3, the baseline system is able to identify “fled” is after “ousted” from explicit marker
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B3 CEAF-E MUC BLANC AVG.

Singleton 78.10 68.98 0.00 48.88 52.01
Matching 78.40 65.82 69.83 76.29 71.94

LCC 82.85 74.66 68.50 77.61 75.69
UI-CCG 83.75 75.81 63.78 73.99 74.28
LTI 82.27 75.15 60.93 71.57 72.60

This work 85.59 79.65 67.81 77.37 77.61

Table 4.2: Test Results for Event Coreference with the Singleton and Matching baselines.

B3 CEAF-E MUC BLANC AVG.

ALL 81.97 74.80 76.33 76.07 77.29

-Distance 81.92 74.48 76.02 77.55 77.50

-Frame 82.14 75.01 76.28 77.74 77.79

-Syntactic 81.87 74.89 75.79 76.22 77.19

Table 4.3: Ablation study for Event Coreference.

“after”. However, it fails to identify that “extradited” is after “arrested”, which requires knowledge
about prototypical event sequences.

(3) Eight months after the [transport fled] Ivory Coast when Gbagbo, the former president, was
[End.Position ousted] by the French military. Blé Goudé was subsequently [Jail arrested] in
Ghana and [transport extradited] Megrahi,[Jail jailed] for [Attack killing] 270 people in 1988.6

In our error analysis, we noticed that our system produces a large number of relations due to
coreference propagation. One single wrong prediction can cause the error to propagate.

Besides memorizing the mention pairs, our model also tries to capture script compatibility
through discourse signals. To further understand how much these signals help, we conduct an
ablation study of the features in the discoursed based compatibility features (see §4.3.2). Similarly,
we remove each feature group from the full feature set one by one and observe the performance
change.

The results are reported in Table 4.5. While most of the features only affect the performance
by less than 1 absolute F1 score, the feature sets after removing mention or sentences show a
significant drop in both precision and recall. This shows that discourse proximity is the most
significant ones among these features. In addition, the mention feature set captures the following
explain away intuition: the event mentions A and B are less likely to be related if there are similar
mentions in between. One such example can be seen in Figure 4.1, the event mention fired is

6The small red text indicates the event type for each mention.
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Prec. Recall F-Score

Oracle Cluster+Temporal 46.21 8.72 14.68

Our Model 18.28 16.91 17.57

Table 4.4: Test results for event sequencing. The Oracle Cluster+Temporal system is running
CAEVO on the Oracle Clusters.

Prec. Recall F-Score ∆

Full 37.92 36.79 36.36

- Mention Type 32.78 29.81 30.07 6.29

- Sentence 33.90 30.75 31.00 5.36

- Temporal 37.21 36.53 35.81 0.55

- Dependency 38.18 36.44 36.23 0.13

- Function words 38.08 36.51 36.18 0.18

Table 4.5: Ablation Study for Event Sequencing.

more likely to relate to the closest killed, instead of the other killed in the first paragraph.
In addition, our performance on the development set is higher than the test set. Further analysis

reveals two causes: 1. the coreference propagation step causes the scores to be very unstable, 2.
our model only learns limited common sense ordering based on lexical pairs, which can easily
overfit to the small training corpus. Since the annotation is difficult to scale, it is important to
use methods to harvest script common sense knowledge automatically, as in the script induction
work [30].

4.5 Discussion

4.5.1 Event Coreference Challenges
Although we have achieved good performance on event coreference, upon closer investigation we
found that most of the coreference decisions are still made based on simple word/lemma matching
(note that the type and realis baseline is as high as 0.72 F1 score). The system exploits little
semantic information to resolve difficult event coreference problems. A major challenge is that
our system is not capable of utilizing event arguments: in fact, Hasler and Orasan [97] found that
only around 20% of the arguments in the same event slot are actually coreferent for coreferential
event pairs in the ACE 2005 corpus. Furthermore, the TAC-KBP corpus uses a relaxed participant
identity requirement for event coreference, which makes argument-based matching more difficult.
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4.5.2 Event Sequencing Challenges
Our event sequencing performance is still low despite the introduction of many features. This task
is inherently difficult because it requires a system to solve both the script clustering and event
ordering tasks. The former task requires both common-sense knowledge and discourse reasoning.
Reasoning is more important for long-term links since there are no explicit clues like prepositions
and dependencies to be exploited. The ablation study shows that discourse features like sentence
distance are more effective, which indicates that our model mainly relies on surface clues and has
limited reasoning power.

Furthermore, we observe a strong locality property of After links by skimming the training
data: most After link relations are found in a small local region. Since reasoning and coreference
based propagation will accumulate local decisions, a system must be accurate on them.

The Ambiguous Boundary of a Script

Besides the above-mentioned challenges, a more fundamental problem is to define the boundary
of scripts. Since the definition of scripts is only prototypical event sequences, the boundaries
between them are not clear. In Example 3, the event jailed is considered to belong to a “Judicial
Process” script and killing is considered to belong to an“Attack” script7. No link is annotated
between these two mentions since they are considered to belong to different clusters, even though
the “jailed” event is to punish the “killing”. Therefore essentially, the current Event Sequencing
task simply requires the system to fit these human defined boundaries. In principle, the “Judicial
Process” script and the “Attack” script can form a larger script structure, on a higher hierarchical
level.

While it is possible to manually define scripts and what kind of events they may contain
specifically in a controlled domain, it is difficult to generalize the relations. Most previous work
on script induction [30, 41, 78, 165, 177] treats scripts as statistical models where probabilities
can be assigned, thereby avoiding the boundary problem. While the script boundaries may be
application dependent, a possible solution may rely on the “Goals” in Schank’s script theory. The
Goal of a script is the final state expected (by the script protagonist) from the sequence of events.
Goal oriented scripts may be able to help us explain whether killing and jailed should be
separate: if we take the“killer” as the protagonist, the goal of “kill” is achieved at the point of the
victim dying. We leave the investigation on proper theoretical justification to future work.

4.6 Conclusion
In this chapter, we present a unified graph framework to conduct event coreference and sequencing.
We have achieved state-of-the-art results on event coreference and report the first attempt at event
sequencing. While we only studied two types of relations, we believe the method can be adopted
in broader contexts.

7Script names are taken from the annotation guideline: http://cairo.lti.cs.cmu.edu/kbp/2016/
after/annotation
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In general, analyzing event structure can bring new aspects of knowledge from text. For
instance, Event Coreference systems can help group scattered information together. Understanding
Event Sequencing can help clarify the discourse structure, which can be useful in other NLP
applications, such as solving entity coreference problems [162]. However, in our investigation,
we find that the linguistic theory and definitions for events are not adequate for the computational
setting. For example, proper theoretical justification is needed to define event coreference, which
should explain the problems, such as argument mismatches. In addition, we also need a theoretical
basis for script boundaries. In the future, we will devote our effort to understanding the theoretical
and computational aspects of events relations, and utilizing them for other NLP tasks.
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Chapter 5

Identifying Missing Information as
Hierarchical Structures

5.1 Introduction
Humans often omit information from utterances to avoid redundancy when the context is clear
enough to resolve the missing parts. This poses challenges for natural language processing (NLP)
solutions. Two example problems in this direction are Verb Phrase Ellipsis (VPE) and Implicit
Argument Detection (IAD). Both can be viewed as forms of cross-sentence ellipsis resolution or
cross-sentence anaphora problems, where we need to find a phrase to be anaphoric to the elliptical
slot. The key difference is that the missing information in VPE is part of the predicate, while the
missing information in IAD is the argument.

Verb Phrase Ellipsis (VPE) is the anaphoric process where a verbal constituent is partially
or totally unexpressed but can be resolved through an antecedent in the context. Consider the
following examples:
(1) His wife also [antecedent works for the paper], as did his father.
(2) In particular, Mr. Coxon says, businesses are [antecedent paying out a smaller percentage of

their profits and cash flow in the form of dividends] than they have historically.
In example 1, the light verb did represents the verb phrase works for the paper; example 2

shows a much longer antecedent phrase, which also differs in tense from the elided one. Following
Dalrymple (1991), we refer to the full verb expression as the ”antecedent” and the anaphor as the
”target.”

Implicit Argument Detection (IAD) is a sub-problem of event argument extraction, which
focuses on finding arguments that are mentioned across sentence boundaries. This task resembles
implicit semantic role labeling (SRL), where the goal is to find argument spans to fill the roles of
event frames. Event arguments can extend beyond sentence boundaries, introducing non-local or
implicit arguments at the document level. Consider the following examples:
(3) The new computer cost 3000 dollars, while the old one cost 1000 dollars. Nevertheless, he

still bought the more expensive one.
(4) The new computer cost 3000 dollars, while the old one cost 1000 dollars. Therefore, he

bought the cheaper one.
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In these examples, the money argument for the purchase event, triggered by the word ”bought,”
appears in the previous sentence. This demonstrates the need to identify predicates and associate
them with multi-word phrases across sentence boundaries.

Both VPE and IAD involve resolving missing information not explicitly stated within the cur-
rent sentence, thereby requiring context from surrounding sentences for accurate comprehension.
Understanding and modeling these hierarchical structures are crucial for tasks that demand deep
text comprehension.

A Pipeline Approach to Reduce the Search Space. Semantically, Verb Phrase Ellipsis (VPE)
and Implicit Argument Detection (IAD) both pose similar problems, requiring the resolution of
missing information not explicitly stated within the current sentence. While VPE deals with the
omission of predicate parts, IAD focuses on the omission of arguments. Despite their differences,
both problems can benefit from a similar approach to decode the hierarchical structure. One
common challenge in both cross-sentence and document-level problems is that the search and
decoding space is much larger than a sentence-level solution, such as those used in regular
semantic role labeling.

A pipeline solution is a natural choice for such problems where we identify the predicates and
then search for the spans. However, considering all possible candidate spans that may occur in
any sentences, their quadratic number still poses significant computational challenges. Moreover,
the span detection needs to be accurate since it affects the semantics. For example, in Example
1, if the antecedent phrase is ”works,” then the semantics of ”did” becomes ”general working”
instead of ”working for the paper.” Hence, we decompose the computation hierarchically.

1. Identify the predicate1.

2. Identify the head word of the phrase to be extracted: The head word often contains crucial
information about the phrase, narrowing down the search space.

3. Identify the correct boundary of the phrase: This step ensures that the entire relevant span is
accurately captured, maintaining the intended semantics.

Predicate Identification. For VPE, this involves detecting the ellipsis targets where the verb
phrase is omitted. For IAD, it involves identifying the event triggers that require argument
resolution across sentence boundaries.

Two-Step Approach for Argument Expansion. For VPE, the next step is to identify the
antecedents for the detected ellipsis targets. This step is decomposed into two subtasks: first,
recognizing potential antecedents, and second, verifying their suitability. For IAD, the process
involves detecting implicit arguments by first identifying candidate head-words and then expanding
them to full argument spans.

Head Identification: Given the challenges posed by the quadratic number of candidate
spans in IAD, we adopt a two-step approach. We hypothesize that syntactical head-words contain
sufficient information to fill argument roles. Thus, we first detect the head-words of the arguments.

1the predicate is sometimes given in certain task settings
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Head-to-Span Expansion: Once the head-words are identified, we expand them to full
argument spans. This reduces the candidate space from quadratic to linear, making the detection
process more efficient. By combining these methodologies, we address both VPE and IAD within
a unified framework that leverages hierarchical structures and anaphora resolution. Our integrated
approach not only improves performance on each individual task but also enhances the overall
understanding of text in natural language processing.

Datasets. The availability of annotated datasets is crucial for training and evaluating our models.
For VPE, there are only a few small datasets. While Bos and Spenader [21] provide publicly
available VPE annotations for Wall Street Journal (WSJ) news documents, the annotations created
by Nielsen [154] include a more diverse set of genres (e.g., articles and plays) from the British
National Corpus (BNC).we transform annotations from the British National Corpus (BNC) into
the format used by Bos et al. (2011) for the Wall Street Journal (WSJ) documents. This unified
format allows for better benchmarking and facilitates meaningful comparisons.

While incorporating implicit arguments requires corresponding annotations, few exists in most
of the widely used event datasets, like ACE2005 [108, 210] and RichERE [109]. Ebner et al. [65]
create the Roles Across Multiple Sentences (RAMS) dataset, which covers multi-sentence implicit
arguments for a wide range of event and role types. They further develop a span-based argument
linking model and achieve relatively high scores.

In this chapter, we will describe the approaches, models and features of both problems
separately, but following the same hierarchical approach presented here.

5.2 Related Work

5.2.1 Related Work on Verb Phrase Ellipsis
Considerable work has been done on VPE in the field of theoretical linguistics: e.g., [52, 186];
yet there is much less work on computational approaches to resolving VPE.

Hardt [1992, 1997] presents, to our knowledge, the first computational approach to VPE. His
system applies a set of linguistically motivated rules to select an antecedent given an elliptical
target. Hardt [96] uses Transformation-Based Learning to replace the manually developed rules.
However, in Hardt’s work, the targets are selected from the corpus by searching for “empty verb
phrases” (constructions with an auxiliary verb only) in the gold standard parse trees.

Nielsen [2005] presents the first end-to-end system that resolves VPE from raw text input.
He describes several heuristic and learning-based approaches for target detection and antecedent
identification. He also discusses a post-processing substitution step in which the target is replaced
by a transformed version of the antecedent (to match the context). We do not address this task here
because other VPE datasets do not contain relevant substitution annotations. Similar techniques
are also described in Nielsen [2003, 2004, 2004].

Results from this prior work are relatively difficult to reproduce because the annotations
on which they rely are inaccessible. The annotations used by Hardt [95] have not been made
available, and those used by Nielsen [154] are not easily reusable since they rely on some particular
tokenization and parser. Bos and Spenader [21] address this problem by annotating a new corpus
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of VPE on top of the WSJ section of the Penn Treebank, and propose it as a standard evaluation
benchmark for the task. Still it is desirable to use Nielsen’s annotations on the BNC which contain
more diverse text genres with more frequent VPE.

5.2.2 Related Work on Implicit Argument Identification
Implicit arguments have been under-explored in event extraction. Most of previous systems
[37, 116, 149, 212] only consider local arguments in the same sentence of the event trigger.
While incorporating implicit arguments requires corresponding annotations, few exists in most
of the widely used event datasets, like ACE2005 [108, 210] and RichERE [109]. There are
several annotation efforts for implicit arguments in SRL, including G&C [84, 85], SemEval-
2010 [178, 179], and 80Days [71]. Yet most are performed with different ontologies such as
Nombank (G&C) and FrameNet (SemEval-2010 and 80Days); on different domains (e.g. novels);
and in smaller scales (G&C and 80Days only cover 10 types of predicates). The lack of annotations
poses challenges to train and transfer implicit argument models for event extraction.

5.3 Modeling Verb Phrase Ellipsis
We focus on the problems of target detection and antecedent identification as proposed by Nielsen
[154]. We propose a refinement of these two tasks, splitting them into these three:

1. Target Detection (T), where the subset of VPE targets is identified.

2. Antecedent Head Resolution (H), where each target is linked to the head of its antecedent.

3. Antecedent Boundary Determination (B), where the exact boundaries of the antecedent
are determined from its head.

The following sections describe each of the steps in detail.

5.3.1 Target Detection
Since the VPE target is annotated as a single word in the corpus2, we model their detection as a
binary classification problem. We only consider modal or light verbs (be, do, have) as candidates,
and train a logistic regression classifier (LogT ) with the following set of binary features:

1. The POS tag, lemma, and dependency label of the verb, its dependency parent, and the
immediately preceding and succeeding words.

2. The POS tags, lemmas and dependency labels of the words in the dependency subtree of
the verb, in the 3-word window, and in the same-size window after (as bags of words).

3. Whether the subject of the verb appears to its right (i.e., there is subject-verb inversion).
2All targets in the corpus of Bos and Spenader [21] are single-word by their annotation guideline.

48



5.3.2 Antecedent Head Resolution
For each detected target, we consider as potential antecedent heads all verbs (including modals
and auxiliaries) in the three immediately preceding sentences of the target word3 as well as the
sentence including the target word (up to the target4). This follows Hardt [94] and Nielsen [154].

We perform experiments using a logistic regression classifier (LogH), trained to distinguish
correct antecedents from all other possible candidates. The set of features are shared with the
Antecedent Boundary Determination task, and are described in detail in Section 5.3.3.

However, a more natural view of the resolution task is that of a ranking problem. The gold
annotation can be seen as a partial ordering of the candidates, where, for a given target, the
correct antecedent ranks above all other candidates, but there is no ordering among the remaining
candidates. To handle this specific setting, we adopt a ranking model with domination loss [56].

Formally, for each potential target t in the determined set of targets T , we consider its set
of candidates Ct, and denote whether a candidate c ∈ Ct is the antecedent for t using a binary
variable act. We express the ranking problem as a bipartite graph G = (V +, V −, E) where vertices
represent antecedent candidates:

V + = {(t, c) | t ∈ T, c ∈ Ct, act = 1}
V − = {(t, c) | t ∈ T, c ∈ Ct, act = 0}

and the edges link the correct antecedents to the rest of the candidates for the same target5:

E = {((t, c+), (t, c−)) | (t, c+) ∈ V +, (t, c−) ∈ V −}

We associate each vertex i with a feature vector xi, and compute its score si as a parametric
function of the features si = g(w,xi). The training objective is to learn parameters w such that
each positive vertex i ∈ V + has a higher score than the negative vertices j it is connected to,
V −
i = {j | j ∈ V −, (i, j) ∈ E}.

The combinatorial domination loss for a vertex i ∈ V + is 1 if there exists any vertex j ∈ V −
i

with a higher score. A convex relaxation of the loss for the graph is given by [56]:

f(w) =
1

|V +|
∑
i∈V +

log(1 +
∑
j∈V −

i

exp(sj − si +∆))

Taking ∆ = 0, and choosing g to be a linear feature scoring function si = w ·xi, the loss becomes:

f(w) =
1

|V +|
∑
i∈V +

log
∑
j∈V −

i

exp(w · xj)−w · xi

The loss over the whole graph can then be minimized using stochastic gradient descent. We will
denote the ranker learned with this approach as RankH .

3Only 1 of the targets in the corpus of Bos and Spenader [21], has an antecedent beyond that window.
4Only 1% of the targets in the corpus are cataphoric.
5During training, there is always 1 correct antecedent for each gold standard target, with several incorrect ones.
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Algorithm 3 Candidate generation
Input: a, the antecedent head
Input: t, the target
Output: B, the set of possible antecedent boundaries (begin, end)

1: as ←− SemanticHeadVerb(a)
2: E ←− {as} // the set of ending positions
3: for ch ∈ RightChildren(as) do
4: e← RightMostNode(ch)
5: if e < t ∧ ValidEnding(e) then
6: E ←− E ∪ {e}
7: B ←− ∅
8: for e ∈ E do
9: B ←− B ∪ {(a, e)}

10: if a == “be′′ then
11: if IsVerb(a+ 1) then
12: A←− A ∪ {(a+ 1, e)}
13: for s ∈ {a+ 1, a+ 2 . . . e− 1} do
14: if IsAdverb(s) ∧ IsVerb(s+ 1) then
15: B ←− B ∪ {(s+ 1, e)}

return B

5.3.3 Antecedent Boundary Determination
From a given antecedent head, the set of potential boundaries for the antecedent, which is a
complete or partial verb phrase, is constructed using Algorithm 3.

Informally, the algorithm tries to generate different valid verb phrase structures by varying the
amount of information encoded in the phrase. To do so, it accesses the semantic head verb as of
the antecedent head a (e.g., paying for are in Example 2), and considers the rightmost node of
each right child. If the node is a valid ending (punctuation and quotation are excluded), it is added
to the potential set of endings E. The set of valid boundaries B contains the cross-product of the
starting position S = {a} with E.

For instance, from Example 2, the following boundary candidates are generated for are:
• are paying
• are paying out
• are paying out a smaller percentage of their profits and cash flow
• are paying out a smaller percentage of their profits and cash flow in the form of dividends
We experiment with both logistic regression (LogB) and ranking (RankB) models for this

task. The set of features is shared with the previous task, and is described in the following section.
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Antecedent Features

The features used for antecedent head resolution and/or boundary determination try to capture
aspects of both tasks. We summarize the features in Table 5.1. The features are roughly grouped
by their type. Labels features make use of the parsing labels of the antecedent and target; Tree
features are intended to capture the dependency relations between the antecedent and target;
Distance features describe distance between them; Match features test whether the context of the
antecedent and target are similar; Semantic features capture shallow semantic similarity; finally,
there are a few Other features which are not categorized.

On the last column of the feature table, we indicate the design purpose of the feature: head
selection (H), boundary detection (B) or both (B&H). However, we use the full feature set for all
three tasks.

5.4 Does Joint Modeling work for VPE?
Here we consider the possibility that antecedent head resolution and target detection should be
modeled jointly (they are typically separate). The hypothesis is that if a suitable antecedent
for a target cannot be found, the target itself might have been incorrectly detected. Similarly,
the suitability of a candidate as antecedent head can depend on the possible boundaries of the
antecedents that can be generated from it.

We also consider the possibility that antecedent head resolution and antecedent boundary
determination should be modeled independently (though they are typically combined). We
hypothesize that these two steps actually focus on different perspectives: the antecedent head
resolution (H) focuses on finding the correct antecedent position; the boundary detection step (B)
focuses on constructing a well-formed verb phrase. We are also aware that B might be helpful
to H, for instance, a correct antecedent boundary will give us correct context words, that can be
useful in determining the antecedent position.

We examine the joint interactions by combining adjacent steps in our pipeline. For the combi-
nation of antecedent head resolution and antecedent boundary determination (H+B), we consider
simultaneously as candidates for each target the set of all potential boundaries for all potential
heads. Here too, a logistic regression model (LogH+B) can be used to distinguish correct (tar-
get, antecedent start, antecedent end) triplets; or a ranking model (RankH+B)
can be trained to rank the correct one above the other ones for the same target.

The combination of target detection with antecedent head resolution (T+H) requires identifying
the targets. This is not straightforward when using a ranking model since scores are only
comparable for the same target. To get around this problem, we add a “null” antecedent head. For
a given target candidate, the null antecedent should be ranked higher than all other candidates if it
is not actually a target. Since this produces many examples where the null antecedent should be
selected, random subsampling is used to reduce the training data imbalance. The “null” hypothesis
approach is used previously in ranking-based coreference systems [63, 171].

Most of the features presented in the previous section will not trigger for the null instance,
and an additional feature to mark this case is added.

The combination of the three tasks (T+H+B) only differs from the previous case in that
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Type Feature Description Purpose

Labels

The POS tag and dependency label of the antecedent head H
The POS tag and dependency label of the antecedent’s last word B
The POS tag and lemma of the antecedent parent H
The POS tag, lemma and dependency label of within a 3 word around
around the antecedent

B

The pair of the POS tags of the antecedent head and the target, and of
their auxiliary verbs

H

The pair of the lemmas of the auxiliary verbs of the antecedent head
and the target

H

Tree

Whether the antecedent and the target form a comparative construction
connecting by so, as or than

H&B

The dependency labels of the shared lemmas between the parse tree of
the antecedent and the target

H

Label of the dependency between the antecedent and target (if exists) H
Whether the antecedent contains any descendant with the same lemma
and dependency label as a descendant of the target.

H

Whether antecedent and target are dependent ancestor of each other H
Whether antecedent and target share prepositions in their dependency
tree

H

Distance
The distance in sentences between the antecedent and the target
(clipped to 2)

H

The number of verb phrases between the antecedent and the target
(clipped to 5)

H

Match
Whether the lemmas of the heads, and words in the the window (=2)
before the antecedent and the target match respectively

H

Whether the lemmas of the ith word before the antecedent and i− 1th
word before the target match respectively (for i ∈ {1, 2, 3}, with the
0th word of the target being the target itself)

H&B

Semantic Whether the subject of the antecedent and the target are coreferent H

Other Whether the lemma of the head of the antecedent is be and that of the
target is do (be-do match, used by Hardt and Nielsen)

H

Whether the antecedent is in quotes and the target is not, or vice versa H&B

Table 5.1: Antecedent Features

all antecedent boundaries are considered as candidates for a target, in addition to the potential
antecedent heads.
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Documents VPE Instances

Train Test Train Test

WSJ 1999 500 435 119
BNC 12 2 641 204

Table 5.2: Corpus statistics

5.5 VPE Experiments

5.5.1 Datasets
We conduct our experiments on two datasets (see Table 5.2 for corpus counts). The first one is the
corpus of Bos and Spenader [21], which provides VPE annotation on the WSJ section of the Penn
Treebank. Bos and Spenader [21] propose a train-test split that we follow6.

To facilitate more meaningful comparison, we converted the sections of the British National
Corpus annotated by Nielsen [154] into the format used by Bos and Spenader [21], and manually
fixed conversion errors introduced during the process7 (Our version of the dataset is publicly
available for research8.) We use a train-test split similar to Nielsen [154]9.

5.5.2 Evaluation
We evaluate and compare our models following the metrics used by Bos and Spenader [21].

VPE target detection is a per-word binary classification problem, which can be evaluated using
the conventional precision (Prec), recall (Rec) and F1 scores.

Bos and Spenader [21] propose a token-based evaluation metric for antecedent selection. The
antecedent scores are computed over the correctly identified tokens per antecedent: precision is
the number of correctly identified tokens divided by the number of predicted tokens, and recall is
the number of correctly identified tokens divided by the number of gold standard tokens. Averaged
scores refer to a “macro”-average over all antecedents.

Finally, in order to asses the performance of antecedent head resolution, we compute precision,
recall and F1 where credit is given if the proposed head is included inside the golden antecedent
boundaries.

6Section 20 to 24 are used as test data.
7We also found 3 annotation instances that could be deemed errors, but decided to preserve the annotations as

they were.
8https://github.com/hunterhector/VerbPhraseEllipsis
9Training set is CS6, A2U, J25, FU6, H7F, HA3, A19, A0P, G1A, EWC, FNS, C8T; test set is EDJ, FR3
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5.5.3 Baselines and Benchmarks
We begin with simple, linguistically motivated baseline approaches for the three subtasks. For
target detection, we re-implement the heuristic baseline used by Nielsen [154]: take all auxiliaries
as possible candidates and eliminate them using part-of-speech context rules (we refer to this as
PosT ). For antecedent head resolution, we take the first non-auxiliary verb preceding the target
verb. For antecedent boundary detection, we expand the verb into a phrase by taking the largest
subtree of the verb such that it does not overlap with the target. These two baselines are also used
in Nielsen [154] (and we refer to them as PrevH and MaxB, respectively).

To upper-bound our results, we include an oracle for the three subtasks, which selects the
highest scoring candidate among all those considered. We denote these as OraT , OraH , OraB.

We also compare to the current state-of-the-art target detection results as reported in Nielsen
[154] on the BNC dataset (NielsenT )10.

5.6 VPE Results
The results for each one of the three subtasks in isolation are presented first, followed by those of
the end-to-end evaluation. We have not attempted to tune classification thresholds to maximize
F1.

5.6.1 Target Detection
Table 5.3 shows the performance of the compared approaches on the Target Detection task. The
logistic regression model LogT gives relatively high precision compared to recall, probably
because there are so many more negative training examples than positive ones. Despite a simple
set of features, the F1 results are significantly better than Nielsen’s baseline PosT .

Notice also how the oracle OraT does not achieve 100% recall, since not all the targets in
the gold data are captured by our candidate generation strategy. The loss is around 7% for both
corpora.

The results obtained by the joint models are low on this task. In particular, the ranking
models RankT+H and RankT+H+B fail to predict any target in the WSJ corpus, since the null
antecedent is always preferred. This happens because joint modeling further exaggerates the
class imbalance: the ranker is asked to consider many incorrect targets coupled with all sorts of
hypothesis antecedents, and ultimately learns just to select the null target. Our initial attempts at
subsampling the negative examples did not improve the situation. The logistic regression models
LogT+H and LogT+H+B are most robust, but still their performance is far below that of the pure
classifier LogT .

5.6.2 Antecedent Head Resolution
Table 5.4 contains the performance of the compared approaches on the Antecedent Head Resolu-
tion task, assuming oracle targets (OraT ).

10The differences in the setup make the results on antecedent resolution not directly comparable.
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WSJ BNC

Prec Rec F1 Prec Rec F1

OraT 100.00 93.28 96.52 100.00 92.65 96.18
LogT 80.22 61.34 69.52 80.90 70.59 75.39
PosT 42.62 43.7 43.15 35.47 35.29 35.38

LogT+H 23.36 26.89 25.00 12.52 38.24 18.86
RankT+H 0.00 0.00 0.00 15.79 5.88 8.57

LogT+H+B 25.61 17.65 20.90 21.50 32.35 25.83
RankT+H+B 0.00 0.00 0.00 16.67 11.27 13.45

NielsenT — — — 72.50 72.86 72.68

Table 5.3: Results for Target Detection

WSJ BNC

Prec Rec F1 Prec Rec F1

OraH 94.59 88.24 91.30 79.89 74.02 76.84
RankH 70.27 65.55 67.83 52.91 49.02 50.89
PrevH 67.57 63.03 65.22 39.68 36.76 38.17
LogH 59.46 55.46 57.39 38.62 35.78 37.15

RankH+B 68.47 63.87 66.09 51.85 48.04 49.87
LogH+B 39.64 36.97 38.26 30.16 27.94 29.01

Table 5.4: Results for Antecedent Head Resolution
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First, we observe that even the oracle OraH has low scores on the BNC corpus. This suggests
that some phenomena beyond the scope of those observed in the WSJ data appear in the more
general corpus (we developed our system using the WSJ annotations and then simply evaluated
on the BNC test data).

Second, the ranking-based model RankH consistently outperforms the logistic regression
model LogH and the baseline PrevH . The ranking model’s advantage is small in the WSJ, but
much more pronounced in the BNC data. These improvements suggest that indeed, ranking is a
more natural modeling choice than classification for antecedent head resolution.

Finally, the joint resolution models RankH+B and LogH+B give poorer results than their
single-task counterparts, though RankH+B is not far behind RankH . Joint modeling requires
more training data and we may not have enough to reflect the benefit of a more powerful model.

5.6.3 Antecedent Boundary Determination
Table 5.5 shows the performance of the compared approaches on the Antecedent Boundary
Determination task, using the soft evaluation scores (the results for the strict scores are omitted for
brevity, but in general look quite similar). The systems use the output of the oracle targets (OraT )
and antecedent heads (OraH).

Regarding boundary detection alone, the logistic regression model LogB outperforms the
ranking model RankB. This suggests that boundary determination is more a problem of deter-
mining the compatibility between target and antecedent extent than one of ranking alternative
boundaries. However, the next experiments suggest this advantage is diminished when gold targets
and antecedent heads are replaced by system predictions.

Non-Gold Antecedent Heads

Table 5.6 contains Antecedent Boundary Determination results for systems which use oracle
targets, but system antecedent heads. When RankH or LogH are used for head resolution, the
difference between LogB and RankB diminishes, and it is even better to use the latter in the
BNC corpus. The models were trained with gold annotations rather than system outputs, and the
ranking model is somewhat more robust to noisier inputs.

On the other hand, the results for the joint resolution model RankH+B are better in this
case than the combination of RankH+RankB, whereas LogH+B performs worse than any 2-step
combination. The benefits of using a ranking model for antecedent head resolution seem thus to
outperform those of using classification to determine its boundaries.

5.6.4 End-to-End Evaluation
Table 5.7 contains the end-to-end performance of different approaches, using the soft evaluation
scores.

The trends we observed with gold targets are preserved: approaches using the RankH maintain
an advantage over LogH , but the improvement of LogB over RankB for boundary determination
is diminished with non-gold heads. Also, the 3-step approaches seem to perform slightly better
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WSJ BNC

Prec Rec F1 Prec Rec F1

OraB 95.06 88.67 91.76 85.79 79.49 82.52
LogB 89.47 83.46 86.36 81.10 75.13 78.00
RankB 83.96 78.32 81.04 75.68 70.12 72.79
MaxB 78.97 73.66 76.22 73.70 68.28 70.88

Table 5.5: Soft results for Antecedent Boundary Determination

WSJ BNC

Prec Rec F1 Prec Rec F1

OraH+OraB 95.06 88.67 91.76 85.79 79.49 82.52
RankH+LogB 64.11 59.8 61.88 47.04 43.58 45.24
RankH+RankB 63.90 59.6 61.67 49.11 45.5 47.24
LogH+LogB 53.49 49.89 51.63 34.77 32.21 33.44
LogH+RankB 53.27 49.69 51.42 36.26 33.59 34.88

RankH+B 67.55 63.01 65.20 50.68 46.95 48.74
LogH+B 40.96 38.20 39.53 30.00 27.79 28.85

Table 5.6: Soft results for Antecedent Boundary Determination with non-gold heads
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WSJ BNC

Prec Rec F1 Prec Rec F1

OraT+OraH+OraB 95.06 88.67 91.76 85.79 79.49 82.52
LogT+RankH+RankB 52.68 40.28 45.65 43.03 37.54 40.10
LogT+RankH+LogB 52.82 40.40 45.78 40.21 35.08 37.47
LogT+LogH+RankB 49.45 37.82 42.86 33.12 28.90 30.86
LogT+LogH+LogB 49.41 37.79 42.83 31.32 27.33 29.19
PosT+PrevH+MaxB 19.04 19.52 19.27 12.81 12.75 12.78

LogT+RankH+B 54.82 41.92 47.51 41.86 36.52 39.01
LogT+LogH+B 38.85 29.71 33.67 26.11 22.78 24.33

Table 5.7: Soft end-to-end results

than the 2-step ones. Together with the fact that the smaller problems are easier to train, this
appears to validate our decomposition choice.

5.7 Discussion of VPE Results
In this chapter we have explored a decomposition of Verb Phrase Ellipsis resolution into subtasks,
which splits antecedent selection in two distinct steps. By modeling these two subtasks separately
with two different learning paradigms, we can achieve better performance then doing them jointly,
suggesting they are indeed of different underlying nature.

Our experiments show that a logistic regression classification model works better for target
detection and antecedent boundary determination, while a ranking-based model is more suitable
for selecting the antecedent head of a given target. However, the benefits of the classification
model for boundary determination are reduced for non-gold targets and heads. On the other hand,
by separating the two steps, we lose the potential joint interaction of them. It might be possible to
explore whether we can bring the benefits of the two side: use separate models on each step, but
learn them jointly. We leave further investigation of this to future work.

We have also explored jointly training a target detection and antecedent resolution model, but
have not been successful in dealing with the class imbalance inherent to the problem.

Our current model adopts a simple feature set, which is composed mostly by simple syntax
and lexical features. It may be interesting to explore more semantic and discourse-level features
in our system. We leave these to future investigation.

All our experiments have been run on publicly available datasets, to which we add our
manually aligned version of the VPE annotations on the BNC corpus. We hope our experiments,
analysis, and more easily processed data can further the development of new computational
approaches to the problem of Verb Phrase Ellipsis resolution.
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(a) The new computer cost 3000 dollars, while the old one cost 1000 dollars.
Nevertheless, he still bought the more expensive one.

(b) The new computer cost 3000 dollars, while the old one cost 1000 dollars.
Therefore, he bought the cheaper one.

Tokens:      ... cost 3000  dolloars  , ...       ... still  bought  the more ...
Indicators:  ...    0     0           0       0 ...      ...    1        0         1     1    ...

BERT Encoder

...                          ...           ...                              ...

   Biaffine
Role-Scorer

Head-to-Span
    Expander

left         right                      arg            trigger

BERT
Reprs.

Decoders

Figure 5.1: Examples of implicit arguments and model illustration. The bold text indicates the
trigger word for the purchase event, while the underlined text indicates its non-local “money”
argument in the previous sentence. Our model first detects the head-word “dollars”, and then
expands it to the whole span.

5.8 Modeling Implicit Argument Identification
The goal of event argument detection is to create labeled links between argument spans and the
predicate (event trigger). Recent state-of-the-art solutions for sentence-level SRL perform the
detection in an end-to-end setting, such as span-based [98, 157], and sequence labeling models [99,
185]. However, span-based models face great challenges when considering arguments across
sentence boundaries, since the computational complexity of such models grows quadratically to
deal with O(N2) span candidates given N tokens. While traditional sequence labeling models
can run in linear-time, they are less flexible and extensible in complex scenarios like overlapping
mentions and multiple roles for one mention.

In this work, we take a two-step approach that decomposes the problem explicitly into two
sub-problems, based on the hypothesis that head-words can usually capture the information of
the mention spans. Figure 5.1 illustrates the three main modules of our model: 1) BERT-based
Encoder, 2) Argument Head-Word Detector, and 3) Head-to-span Expander.

59



5.8.1 BERT-based Encoder
Our encoding module is a BERT-based contextualized encoder. The input contains a predicate
word (or occasionally a span), which triggers an event, together with its multi-sentence context.
We refer to the sentence containing the event trigger as the center sentence. We concatenate the
tokens within the 5-sentence window (the window size used in RAMS annotation) of the center
sentences, and feed them to BERT to obtain the contextual representation e of each token. In
addition, we add special token type ids indicators: tokens of the event trigger are assigned
0, other tokens in the center sentence get 1, and tokens in surrounding sentences get 011. We only
adopt the indicators when fine-tuning BERT, since the pre-trained BERT originally uses them as
segment ids.

5.8.2 Argument Head-word Detector
Instead of directly deciding argument spans, we first identify the head-words of the arguments.
The hypothesis is that the head-word is able to represent the meaning of the whole span. In
this way, this sub-problem mimics a token-pairwise dependency-parsing problem. Following
[60, 61], we adopt a biaffine module to calculate Prr(p, c): the probability of a candidate word c
filling an argument role r in the frame governed by a predicate p. We first take the contextualized
representations of the candidate (ec) and the predicate (ep), which are calculated by BERT as
described in §5.8.1. “Biaffiner” further gives the pairwise score based on these representations,
and Prr(p, c) is then given by softmax with the scores:

Prr(p, c) =
expBiaffiner(ep, ec)∑

c′∈C∪{ϵ} expBiaffiner(ep, ec′)

where the normalization is done over the argument candidate set C (or null ϵ, whose score is fixed
to 0) for each role, following [65, 157]. During training, we use the cross-entropy loss to guide
the network to pick head-words of gold arguments (or ϵ if there are no arguments for this role).
If there are multiple arguments for one role, we view them as individual instances and sum the
losses. At inference time, we simply pick the maximumly-scored argument (or ϵ) for each role.

5.8.3 Head-to-span Expander
The second module expands each head-word of the argument to its full span. We view it as a
combination of left and right boundary classification problems. Taking the left-expanding scenario
(L) as example, for each head-word h, we generate a set of candidate spans by adding words one
by one on the left up to K words (we empirically set K = 7), and calculate the probability of
word b being the boundary as follow:

PrL(h, b) =
expMLPL(eh, eb)∑

b′∈(h−K,h] expMLPL(eh, eb′)

11We overload 0 because pre-trained BERT only has two types of token type id. Nevertheless, the trigger
words are still distinguishable since they appear inside center sentences, and are separated from other sentences.
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+TCD Dev. F1 Test P Test R Test F1

Span
no 69.9 62.8 74.9 68.3
yes 75.1 78.1 69.2 73.3

Head
no 71.0 71.5 66.2 68.8
yes 74.3 81.1 66.2 73.0

Table 5.8: Comparison of Span-based [65] and Head-based (ours) models on RAMS, given gold
argument spans. “+TCD” indicates whether applying type-constrained decoding based on gold
event types.

Here, the input to the Multi-layer Perceptron (MLP) is again the contextualized representations
as depicted in §5.8.1. During training, we minimize cross-entropy losses on the left and right
respectively. At test time, we expand to the maximumly-scored boundary words on both sides.

5.9 Experiment on IAP
We conduct all experiments12 on the RAMS (v1.0) dataset and focus on the event argument
detection task: given (gold) event triggers and their multi-sentence contexts, predicting the
argument spans from raw input tokens. Following [65], we only use gold event types in the
type-constrained decoding (TCD) setting.

Through our experiments, we adopt the pre-trained bert-base-cased model. We train
all the models for maximumly 20 epochs. If fine-tuning BERT, we set the initial learning rate to
5e-5; otherwise, it is set to 2e-4. We jointly train our argument-detector and span-expander, with
loss multipliers of 1.0 and 0.5, respectively.

Since head-words are not annotated, we apply a simple rule: utilizing predicted dependency
trees, we heuristically pick the word that has the smallest arc distance to the dependency root as the
head. Ties are broken by choosing the rightmost one. There are cases where this procedure does
not always give the perfect head, or there is no single head-word for a span (e.g., in multi-word
expressions or conjunction). Nevertheless, we find this strategy works well in practice.

5.9.1 Argument Linking with Gold Spans
Setting To compare our model with span-based models, we first evaluate in the same setting
of [65] that assumes gold argument spans. We directly apply the head rule on the gold spans
and consider the head-words as candidates. We also adopt the same BERT setting: learning a
linear combination of layers 9, 10, 11 and 12, and applying neither the special input indicators nor
fine-tuning.

12Our implementation is publicly available at https://github.com/zzsfornlp/zmsp
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+TCD
Dev. Test

Span F1 Head F1 Span F1 Head F1

Seq.
no 38.1±0.7 45.7±0.7 39.3±0.4 47.1±0.7
yes 39.2±0.7 46.7±0.8 40.5±0.4 48.0±0.5

Head
no 38.9±0.6 46.4±0.7 40.1±0.7 47.7±0.9
yes 40.3∗±0.6 48.0∗±0.7 41.8∗±0.6 49.7∗±0.8

Table 5.9: Comparison of the sequence-labeling model (Seq.) and our Head-based model for
argument detection on RAMS v1.0. All results are averaged over five runs, ‘∗’ denotes that
the result of Head model is significantly better than the corresponding Seq. model (by paired
randomization test, p < 0.05).

Results Table 5.8 compares our results with the reported results of the span-based model from
[65]. The results show that the head-word approach can get comparable results to the span-based
counterpart. This matches our hypothesis that head-words contain sufficient information of
surrounding words using contextualized embedding, making them reasonable alternatives to full
argument spans.

5.9.2 Full Argument Detection
Setting This setting considers all arguments from any spans in the multi-sentence context.
Unless otherwise noted, here we use the last layer of BERT and apply fine-tuning for the whole
model. We compare with a strong BERT-based BIO-styled sequence labeling model [185]. We
adopt a modified version13 from AllenNLP and re-train it on RAMS with similar settings: adopting
special input indicators and fine-tuning BERT. For arguments that have multiple roles labels, we
simply concatenate the labels as a new class.

Results Table 5.9 shows the main results for full argument detection. Since the criterion of
full-span matching might be too strict in some way, we also report head-word based F1 scores
by evaluating solely on head-word matches (obtained using the same head rules). The results
show that our head-word based approach gets better results on average without type-constrained
decoding and significantly better results after adopting type-constrained decoding with gold event
types. Our head-driven approach is also flexible and easily extensible to more complex scenarios
like nesting mentions or multiple roles, while keeping the linear complexity.

Ablation Table 5.10 lists the ablation results on the encoder. The results show that the BERT
encoder contributes much to the performance of our full model. Fine-tuning BERT and the special
indicator inputs can provide further improvements.

13https://github.com/allenai/allennlp/blob/b89ff098372656b674ec71457dda071
222fd05ae/allennlp/models/srl_bert.py
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SpanF1 HeadF1

BERT-Full 38.9±0.6 46.4±0.7
No-Indicator 35.6±0.4 42.9±0.4
No-FineTuning 34.4±0.5 40.0±0.4

LSTM 26.6±0.4 31.9±0.6

Table 5.10: Ablation on the encoder for the head-based argument detection model (on development
set, no type-constrained decoding). “BERT-Full” is our full fine-tuned BERT encoder, “No-
Indicator” ablates indicating inputs, “No-FineTuning” freezes all pre-trained parameters of BERT,
and “LSTM” replaces the BERT with a bi-directional LSTM encoder.

d=-2 d=-1 d=0 d=1 d=2
(3.6%) (7.5%) (82.8%) (4.0%) (2.1%)

Seq. 14.0±0.6 14.0±2.4 41.2±0.9 15.7±1.0 4.2±2.5
Head 15.6±1.7 15.3±1.0 43.4±0.7 17.8±2.6 8.5±6.2

Table 5.11: Performance breakdown for Span-F1 by argument-trigger distance d (on development
set, no type-constrained decoding). Numbers in parentheses at the second row indicate the
distribution over distance d.

On Sentence Distances Table 5.11 lists the performance breakdown on different sentence
distances between arguments and triggers. As opposed to the relative consistent performance
in the gold span setting, as shown in [65], we notice a dramatic performance drop on non-local
arguments. There may be two main reasons: 1) data imbalance, since non-local implicit arguments
appear much less frequently (only around 18% in RAMS) than local ones; 2) lack of direct syntax
signals, making the connections between the implicit arguments and event triggers much weaker
than the local ones.

On Argument Roles We also investigate performance breakdowns on different argument roles.
The results are shown in Figure 5.2, where we take the top-20 frequent roles to get more robust
results. We can observe that our model performs better on core roles such as “communicator”,
“employee” and “victim” (with F1 > 50), but struggles on non-core roles, like “instrument”,
“origin” and “destination”, with F1 scores of around 20 to 30. The F1 scores correlate well
(with Pearson and Spearman correlation coefficients of 0.64 and 0.70, respectively) with the local
percentages: the more often one role appears locally around the event trigger, the better results it
can obtain. These patterns are not surprising if we consider the possible underlying reasoning.
The non-core arguments are not closely related with the event trigger, and thus can appear more
freely at other places (or sometimes even be omitted), leading to a lower local percentage and also
being harder to detect.
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Category Description Example
Count

(Percentage)

Correct Correct - 348 (38.6%)

Span Unimportant
span mis-
match

The [monument]artifact to fallen Soviet sailorsartifact in Lim-
bazi, was demolishedDestroy by activists.

82 (9.1%)

Coref. Co-
references

The United Statesdestination gets more energy domestically, as
[the country]destination continues to rely on oil importsTranport
from elsewhere.

60 (6.7%)

Possi. Possible
annotation
problems

A Chinese officialparticipant said dialogueDiscussion was
needed to resolve issues on the Korean peninsula.

44 (4.9%)

Partial Partially cor-
rect

[His]recipient family, advisers and alliesrecipient set about ac-
quiringPurchase expensive overseas homes and positions in
the country.

26 (2.9%)

Frame Frame errors Relation was wrecked last November when
[Turkey]killer attacker shotLifeDie down a fighter jet over
the boarder.

31 (3.4%)

Others Other errors - 310 (34.4%)

Table 5.12: Examples and results of error analysis. In the examples, the bold text indicates
the trigger word, followed by its event type noted in green. Arguments in gold annotations are
indicated by the underlined spans with red role types, while the predicted arguments are indicated
by [bracketed] spans with blue role types.

5.9.3 Manual Analysis
To further investigate in detail what type of errors the model makes, we sample 200 event
frames from the development set and manually compare our model’s predictions with the gold
annotations. Overall, there are 459 annotated arguments and 442 predicted ones. For both
annotated and predicted arguments, we assign them to one of seven categories, and the results
are listed in Table 5.12. Here, the “Span” errors denote unimportant span mismatches, and
they take nearly 9% of all items. If we ignore these errors, the performance can reach around
47%, which roughly matches the automatically evaluated Head-F1 scores. In some way, this
supports our intuition to adopt a two-step approach, since the decisions of the span ranges may
be separated from the core problem of argument detection, where head-words can be reasonable
representatives. Another major source of errors comes from “Coref.”, which is not surprising since
the same entities can have multiple appearances at the document level. Our analysis indicates that
this is a problem that should be further investigated for both modeling and evaluation. Another
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Figure 5.2: Performance breakdown of Span-F1 on the top-20 frequent roles (on development
set, no type-constrained decoding). x-axis represents the percentage of local arguments for this
role, while y-axis denotes the role specific Span-F1 scores. The two blue dashed lines denote the
overall F1 scores (0.389) and local percentage (82.8%).

notable type of error is frame mismatch (“Frame”). In the main setting (without type-constrained
decoding), our model neither utilizes nor predicts event frame types, meaning that the frame
information purely comes from the trigger words. Therefore, roles belonging to other event
frames may be predicted. Finally, the “Others” category includes the ones where we cannot find
obviously intuitive patterns. We would identify most of them as the more difficult cases, whose
error breakdown follows similar patterns to the overall ones as shown in Figure 5.2.
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Part II

Scaling up Data for Event Semantics
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In Part II of this thesis, we explored supervised approaches to event structure prediction,
relying on expert-annotated datasets to develop algorithms that decode various event structures.
However, the limitations in the availability and scale of these datasets pose significant challenges
for achieving comprehensive semantic understanding. To address these limitations, Part II of this
thesis focuses on scaling up data to enhance the robustness and generalizability of event semantics
models. This part investigates three distinct approaches to expand and utilize data effectively,
uncovering new insights and phenomena in event semantics.

§7 proposes a crowdsourcing method for Cross-Document Event Coreference. In this chapter,
we introduce a novel crowdsourcing workflow designed to handle the complexity of annotating
cross-document event coreference. By breaking down the annotation tasks into simpler steps
and incorporating follow-up questions to gather evidence on event mention, time, location,
and participant overlap, we enable crowdworkers to contribute effectively. This approach not
only scales the data but also leads to the discovery of a new type of partial identity, termed
spatiotemporal continuity. The chapter details the methodology, implementation, and results of
this crowdsourcing approach.

§6 utilizes indirect supervision for Event Salience Detection. Here, we explore the use
of indirect supervision signals to create a large-scale event salience dataset. By leveraging
summarization as a proxy task, we automatically generate event salience annotations using the
Annotated New York Times corpus. This chapter discusses the process of dataset creation, the
model development, and the observed semantic phenomena that emerge from this approach.
We demonstrate how models trained with indirect supervision can capture script-related event
mentions and correlated event arguments, enhancing our understanding of event salience.

§8 analyzes Language Models on Coreference and Winograd Schemas. This chapter delves
into the capabilities of Large Language Models (LLMs) in solving coreference and related tasks,
with a particular focus on the tasks similar to the Winograd Schema Challenge. We analyze the
performance and developmental trajectory of LLMs using model checkpoints from the LLM360
project. Through circuit analysis methods, we investigate the underlying mechanisms that enable
LLMs to address these complex tasks. This analysis reveals the strengths and limitations of
current LLMs, highlighting areas where further advancements are needed to achieve human-level
performance.
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Chapter 6

Event Salience

6.1 Introduction
Automatic extraction of prominent information from text has always been a core problem in
language research. While traditional methods mostly concentrate on the word level, researchers
start to analyze higher-level discourse units in text, such as entities [62] and events [44].

Events are important discourse units that form the backbone of our communication. They play
various roles in documents. Some are more central in discourse: connecting other entities and
events, or providing key information of a story. Others are less relevant, but not easily identifiable
by NLP systems. Hence it is important to be able to quantify the “importance” of events. For
example, Figure 6.1 is a news excerpt describing a debate around a jurisdiction process: “trial” is
central as the main discussing topic, while “war” is not.

Researchers are aware of the need to identify central events in applications like detecting
salient relations [223], and identifying climax in storyline [208]. Generally, the salience of
discourse units is important for language understanding tasks, such as document analysis [14],
information retrieval [221], and semantic role labeling [40]. Thus, proper models for finding
important events are desired.

In this chapter, we study the task of event salience detection, to find events that are most
relevant to the main content of documents. To build a salience detection model, one core
observation is that salient discourse units are forming discourse relations. In Figure 6.1, the
“trial” event is connected to many other events: “charge” is pressed before “trial”; “trial” is being
“delayed”.

We present two salience detection systems based on the observations. First is a feature
based learning to rank model. Beyond basic features like frequency and discourse location,
we design features using cosine similarities among events and entities, to estimate the content
organization [88]: how lexical meaning of elements relates to each other. Similarities from
within-sentence or across the whole document are used to capture interactions on both local and
global aspects (§6.4). The model significantly outperforms a strong “Frequency” baseline in our
experiments.

However, there are other discourse relations beyond lexical similarity. Figure 6.1 showcases
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Figure 6.1: Examples annotations. Underlying words are annotated event triggers; the red bold
ones are annotated as salient.

some: the script relation [184]1 between “charge” and “trial”, and the frame relation [11] between
“attacks” and “trial” (“attacks” fills the “charges” role of “trial”). Since it is unclear which ones
contribute more to salience, we design a Kernel based Centrality Estimation (KCE) model (§6.5)
to capture salient specific interactions between discourse units automatically.

In KCE, discourse units are projected to embeddings, which are trained end-to-end towards
the salience task to capture rich semantic information. A set of soft-count kernels are trained to
weigh salient specific latent relations between discourse units. With the capacity to model richer
relations, KCE outperforms the feature-based model by a large margin (§6.7.1). Our analysis
shows that KCE is exploiting several relations between discourse units: including script and frames
(Table 6.5). To further understand the nature of KCE, we conduct an intrusion test (§6.6.2), which
requires a model to identify events from another document. The test shows salient events form
tightly related groups with relations captured by KCE.

The notion of salience is subjective and may vary from person to person. We follow the
empirical approaches used in entity salience research [62]. We consider the summarization test:
an event is considered salient if a summary written by a human is likely to include it, since events
about the main content are more likely to appear in a summary. This approach allows us to create
a large-scale corpus (§6.3).

This chapter makes three main contributions. First, we present two event salience detection
systems, which capture rich relations among discourse units. Second, we observe interesting
connections between salience and various discourse relations (§6.7.1 and Table 6.5), implying
potential research on these areas. Finally, we construct a large scale event salience corpus,

1Scripts are prototypical sequences of events: a restaurant script normally contains events like “order”, “eat” and
“pay”.
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providing a testbed for future research. Our code, dataset and models are publicly available2.

6.2 Related Work
Events have been studied on many aspects due to their importance in language. To name a few:
event detection [117, 150, 163], coreference [120, 127], temporal analysis [29, 58], sequencing [4],
script induction [12, 30, 164, 177].

However, studies on event salience are premature. Some previous work attempts to approx-
imate event salience with word frequency or discourse position [208, 223]. Parallel to ours,
Choubey et al. [44] propose a task to find the most dominant event in news articles. They draw
connections between event coreference and importance, on hundreds of closed-domain documents,
using several oracle event attributes. In contrast, our proposed models are fully learned and applied
on more general domains and at a larger scale. We also do not restrict to a single most important
event per document.

There is a small but growing line of work on entity salience [59, 62, 166, 221]. In this work,
we study the case for events.

Text relations have been studied in tasks like text summarization, which mainly focused on
cohesion [91]. Grammatical cohesion methods make use of document level structures such as
anaphora relations [13] and discourse parse trees [132]. Lexical cohesion based methods focus on
repetitions and synonyms on the lexical level [70, 145, 187]. Though sharing similar intuitions,
our proposed models are designed to learn richer semantic relations in the embedding space.

Comparing to the traditional summarization task, we focus on events, which are at a different
granularity. Our experiments also unveil interesting phenomena among events and other discourse
units.

6.3 The Event Salience Corpus
This section introduces our approach to construct a large-scale event salience corpus, including
methods for finding event mentions and obtaining saliency labels. The studies are based on the
Annotated New York Times corpus [182], a newswire corpus with expert-written abstracts.

6.3.1 Automatic Corpus Creation
Event Mention Annotation: Despite many annotation attempts on events [24, 169], automatic
labeling of them in general domain remains an open problem. Most of the previous work follows
empirical approaches. For example, Chambers and Jurafsky [30] consider all verbs together with
their subject and object as events. Do et al. [57] additionally include nominal predicates, using
the nominal form of verbs and lexical items under the Event frame in FrameNet [11].

There are two main challenges in labeling event mentions. First, we need to decide which
lexical items are event triggers. Second, we have to disambiguate the word sense to correctly
identify events. For example, the word “phone” can refer to an entity (a physical phone) or an

2https://github.com/hunterhector/EventSalience
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Train Dev Test

# Documents 526126 64000 63589

Avg. # Word 794.12 790.27 798.68

Avg. # Events 61.96 60.65 61.34

Avg. # Salience 8.77 8.79 8.90

Table 6.1: Dataset Statistics.

event (a phone call event). We use FrameNet to solve these problems. We first use a FrameNet
based parser: Semafor [55], to find and disambiguate triggers into frame classes. We then use the
FrameNet ontology to select event mentions.

Our frame based selection method follows the Vendler classes [205], a four way classification
of eventuality: states, activities, accomplishments and achievements. The last three classes involve
state change, and are normally considered as events. Following this, we create an “event-evoking
frame” list using the following procedure:

1. We keep frames that are subframes of Event and Process in the FrameNet ontology.
2. We discard frames that are subframes of state, entity and attribute frames, such as Entity,

Attributes, Locale, etc.
3. We manually inspect frames that are not subframes of the above-mentioned ones (around

200) to keep event related ones (including subframes), such as Arson, Delivery, etc.
This gives us a total of 569 frames. We parse the documents with Semafor and consider

predicates that trigger a frame in the list as candidates. We finish the process by removing the
light verbs3 and reporting events4 from the candidates, similar to previous research [175].
Salience Labeling: For all articles with a human written abstract (around 664,911) in the New
York Times Annotated Corpus, we extract event mentions. We then label an event mention as
salient if we can find its lemma in the corresponding abstract (Mitamura et al. [142] showed that
lemma matching is a strong baseline for event coreference.). For example, in Figure 6.1, event
mentions in bold and red are found in the abstract, thus labeled as salient. Data split is detailed in
Table 6.1 and §6.6.

6.3.2 Annotation Quality
While the automatic method enables us to create a dataset at scale, it is important to understand
the quality of the dataset. For this purpose, we have conducted two small manual evaluation study.

Our lemma-based salience annotation method is based on the assumption that lemma matching
being a strong detector for event coreference. In order to validate this assumption, one of the

3Light verbs carry little semantic information: “appear”, “be”, “become”, “do”, “have”, “seem”, “do”, “get”,
“give”, “go”, “have”, “keep”, “make”, “put”, “set”, “take”.

4Reporting verbs are normally associated with the narrator: “argue”, “claim”, “say”, “suggest”, “tell”.
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Name Description

Frequency The frequency of the event lemma in document.

Sentence Location The location of the first sentence that contains the event.

Event Voting Average cosine similarity with other events in document.

Entity Voting Average cosine similarity with other entities in document.

Local Entity Voting Average cosine similarity with entities in the sentence.

Table 6.2: Event Salience Features.

authors manually examined 10 documents and identified 82 coreferential event mentions pairs
between the text body and the abstract. The automatic lemma rule identifies 72 such pairs: 64
of these matches human decision, producing a precision of 88.9% (64/72) and a recall of 78%
(64/82). There are 18 coreferential pairs missed by the rule.

The next question is: is an event really important if it is mentioned in the abstract? Although
prior work [62] shows that the assumption to be valid for entities, we study the case for events.
We asked two annotators to manually annotate 10 documents (around 300 events) using a 5-point
Likert scale for salience. We compute the agreement score using Cohen’s Kappa [45]. We find
the task to be challenging for human: annotators don’t agree well on the 5-point scale (Cohen’s
Kappa = 0.29). However, if we collapse the scale to binary decisions, the Kappa between the
annotators raises to 0.67. Further, the Kappa between each annotator and automatic labels are
0.49 and 0.42 respectively. These agreement scores are also close to those reported in the entity
salience tasks [62].

While errors exist in the automatic annotation process inevitably, we find the error rate to be
reasonable for a large-scale dataset. Further, our study indicates the difficulties for human to rate
on a finer scale of salience. We leave the investigation of continuous salience scores to future
work.

6.4 Feature-Based Event Salience Model
This section presents the feature-based model, including the features and the learning process.

6.4.1 Features
Our features are summarized in Table 6.2.
Basic Discourse Features: We first use two basic features similar to Dunietz and Gillick [62]:
Frequency and Sentence Location. Frequency is the lemma count of the mention’s syntactic head
word [131]. Sentence Location is the sentence index of the mention, since the first few sentences
are normally more important. These two features are often used to estimate salience [14, 208].
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Content Features: We then design several lexical similarity features, to reflect Grimes’ content
relatedness [88]. In addition to events, the relations between events and entities are also important.
For example, Figure 6.1 shows some related entities in the legal domain, such as “prosecutors”
and “court”. Ideally, they should help promote the salience status for event “trial”.

Lexical relations can be found both within-sentence (local) or across sentence (global) [91].
We compute the local part by averaging similarity scores from other units in the same sentence.
The global part is computed by averaging similarity scores from other units in the document. All
similarity scores are computed using cosine similarities on pre-trained embeddings [140].

These lead to 3 content features: Event Voting, the average similarity to other events in the
document; Entity Voting, the average similarity to entities in the document; Local Entity Voting,
the average similarity to entities in the same sentence. Local event voting is not used since a
sentence often contains only 1 event.

6.4.2 Model
A Learning to Rank (LeToR) model [119] is used to combine the features. Let evi denote the ith
event in a document d. Its salience score is computed as:

f(evi, d) = Wf · F (evi, d) + b (6.1)

where F (evi, d) is the features for evi in d (Table 6.2); Wf and b are the parameters to learn.
The model is trained with pairwise loss:∑

ev+,ev−∈d

max(0, 1− f(ev+, d) + f(ev−, d)), (6.2)

w.r.t. y(ev+, d) = +1 & y(ev−, d) = −1.

y(ei, d) =

{
+1, if ei is a salient entity in d,

−1, otherwise.

where ev+ and ev− represent the salient and non-salient events; y is the gold standard function.
Learning can be done by standard gradient methods.

6.5 Neural Event Salience Model
As discussed in §6.1, the salience of discourse units is reflected by rich relations beyond lexical
similarities, for example, script (“charge” and “trial”) and frame (a “trial” of “attacks”). The
relations between these words are specific to the salience task, thus difficult to be captured by raw
cosine scores that are optimized for word similarities. In this section, we present a neural model
to exploit the embedding space more effectively, in order to capture relations for event salience
estimation.
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6.5.1 Kernel-based Centrality Estimation
Inspired by the kernel ranking model [220], we propose Kernel-based Centrality Estimation
(KCE), to find and weight semantic relations of interests, in order to better estimate salience.

Formally, given a document d, the set of annotated events V = {ev1, . . . evi . . . , evn}, KCE
first embed an event into vector space: evi

Emb−−→ −→evi. The embedding function is initialized with
pre-trained embeddings. It then extract K features for each evi:

ΦK(evi,V) = {ϕ1(
−→evi,V), . . . , ϕk(

−→evi,V), . . . , ϕK(−→evi,V)}, (6.3)

ϕk(
−→evi,V) =

∑
evj∈V

exp

(
−(cos(−→evi,−→evj)− µk)

2

2σ2
k

)
. (6.4)

ϕk(
−→evi,V) is the k-th Gaussian kernel with mean µk and variance σ2

k. It models the interactions
between events in its kernel range defined by µk and σk. ΦK(evi,V) enforces multi-level interac-
tions among events — relations that contribute similarly to salience are expected to be grouped
into the same kernels. Such interactions greatly improve the capacity of the model with negligible
increase in the number of parameters. Empirical evidences [220] have shown that kernels in this
form are effective to learn weights for task-specific term pairs.

The final salience score is computed as:

f(evi, d) = Wv · ΦK(evi,V) + b, (6.5)

where Wv is learned to weight the contribution of the certain relations captured by each kernel.
We then use the exact same learning objective as in equation (6.2). The pairwise loss is first

back-propagated through the network to update the kernel weights Wv, assigning higher weights
to relevant regions. Then the kernels use the gradients to update the embeddings, in order to
capture the meaningful discourse relations for salience.

Since the features and KCE capture different aspects, combining them may give superior
performance. This can be done by combining the two vectors in the final linear layer:

f(evi, d) = Wv · ΦK(evi,V) +Wf · F (evi, d) + b (6.6)

6.5.2 Integrating Entities into KCE
KCE is also used to model the relations between events and entities. For example, in Figure 6.1,
the entity “court” is a frame element of the event “trial”; “United States” is a frame element of the
event “war”. It is not clear which pair contributes more to salience. We again let KCE to learn it.

Formally, let E be the list of entities in the document, i.e. E = {en1, . . . , eni, . . . , enn}, where
eni is the ith entity in document d. KCE extracts the kernel features about entity-event relations as
follows:
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ΦK(evi,E) = {ϕ1(
−→evi,E), . . . , (6.7)

ϕk(
−→evi,E), . . . , ϕK(−→evi,E)},

ϕk(
−→evi,E) =

∑
enj∈E

exp

(
−(cos(−→evi,−→enj)− µk)

2

2σ2
k

)
(6.8)

similarly, eni is embedded by: eni
Emb−−→ −→eni, which is initialized by pre-trained entity embeddings.

We reach the full KCE model by combining all the vectors using a linear layer:

f(evi, d) = We · ΦK(evi,E) +Wv · ΦK(evi,V)
+Wf · F (evi, d) + b (6.9)

The model is again trained by equation (6.2).

6.6 Experimental Methodology
This section describes our experiment settings.

6.6.1 Event Salience Detection
Dataset: We conduct our experiments on the salience corpus described in §6.3. Among the
664,911 articles with abstracts, we sample 10% of the data as the test set and then randomly leave
out another 10% documents for development. Overall, there are 4359 distinct event lexical items,
at a similar scale with previous work [30, 57]. The corpus statistics are summarized in Table 6.1.
Input: The inputs to models are the documents and the extracted events. The models are required
to rank the events from the most to least salience.
Baselines: Three methods from previous researches are used as baselines: Frequency, Location
and PageRank. The first two are often used to simulate saliency [14, 208]. The Frequency baseline
ranks events based on the count of the headword lemma; the Location baseline ranks events using
the order of their appearances in discourse. Ties are broken randomly.

Similar to entity salience ranking with PageRank scores [221], our PageRank baseline runs
PageRank on a fully connected graph whose nodes are the events in documents. The edges are
weighted by the embedding similarities between event pairs. We conduct supervised PageRank on
this graph, using the same pairwise loss setup as in KCE. We report the best performance obtained
by linearly combining Frequency with the scores obtained after a one-step random walk.
Evaluation Metric: Since the importance of events is on a continuous scale, the boundary
between “important” and “not important” is vague. Hence we evaluate it as a ranking problem.
The metrics are the precision and recall value at 1, 5 and 10 respectively. It is adequate to stop at 10
since there are less than 9 salient events per document on average (Table 6.1). We also report Area
Under Curve (AUC). Statistical significance values are tested by permutation (randomization) test
with p < 0.05.
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Implementation Details: We pre-trained word embeddings with 128 dimensions on the whole
Annotated New York Times corpus using Word2Vec [140]. Entities are extracted using the TagMe
entity linking toolkit [74]. Words or entities that appear only once in training are replaced with
special “unknown” tokens.

The hyper-parameters of the KCE kernels follow previous literature [220]. There is one exact
match kernel (µ = 1, σ = 1e−3) and ten soft-match kernels evenly distributed between (−1, 1),
i.e. µ ∈ {−0.9,−0.7, . . . , 0.9}, with the same σ = 0.1.

The parameters of the models are optimized by Adam [107], with batch size 128. The vectors
of entities are initialized by the pre-trained embeddings. Event embeddings are initialized by their
headword embedding.

6.6.2 The Event Intrusion Test: A Study
KCE is designed to estimate salience by modeling relations between discourse units. To better
understand its behavior, we design the following event intrusion test, following the word intrusion
test used to assess topic model quality [32].
Event Intrusion Test: The test will present to a model a set of events, including: the origins, all
events from one document; the intruders, some events from another document. Intuitively, if
events inside a document are organized around the core content, a model capturing their relations
well should easily identify the intruder(s).

Specifically, we take a bag of unordered events {O1, O2, . . . , Op}, from a document O, as the
origins. We insert into it intruders, events drawn from another document, I: {I1, I2, . . . , Iq}. We
ask a model to rank the mixed event set M = {O1, I1, O2, I2, . . .}. We expect a model to rank the
intruders Ii below the origins Oi.
Intrusion Instances: From the development set, we randomly sample 15,000 origin and intruding
document pairs. To simplify the analysis, we only take documents with at least 5 salient events.
The intruder events, together with the entities in the same sentences, are added to the origin
document.
Metrics: AUC is used to quantify ranking quality, where events in O are positive and events in I
are negative. To observe the ranking among the salient origins, we compute a separate AUC score
between the intruders and the salient origins, denoted as SA-AUC. In other words, SA-AUC is
the AUC score on the list with non-salient origins removed.
Experiments Details: We take the full KCE model to compute salient scores for events in the
mixed event set M , which are directly used for ranking. Frequency is recounted. All other features
(Table 6.2) are set to 0 to emphasize the relational aspects,

We experiment with two settings: 1. adding only the salient intruders. 2. adding only the
non-salient intruders. Under both settings, the intruders are added one by one, allowing us to
observe the score change regarding the number of intruders added. For comparison, we add a
Frequency baseline, that directly ranks events by the Frequency feature.

6.7 Evaluation Results
This section presents the evaluations and analyses.
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Method P@01 P@05 P@10 AUC

Location 0.3555 – 0.3077 – 0.2505 – 0.5226 –
PageRank 0.3628 – 0.3438 – 0.3007 – 0.5866 –
Frequency 0.4542 – 0.4024 – 0.3445 – 0.5732 –

LeToR 0.4753† +4.64% 0.4099† +1.87% 0.3517† +2.10% 0.6373† +11.19%
KCE (-EF) 0.4420 −2.69% 0.4038 +0.34% 0.3464† +0.54% 0.6089† +6.23%
KCE (-E) 0.4861†‡ +7.01% 0.4227†‡ +5.04% 0.3603†‡ +4.58% 0.6541†‡ +14.12%
KCE 0.5049†‡ +11.14% 0.4277†‡ +6.29% 0.3638†‡ +5.61% 0.6557†‡ +14.41%

Method R@01 R@05 R@10 W/T/L

Location 0.0807 – 0.2671 – 0.3792 – –/–/–
PageRank 0.0758 – 0.2760 – 0.4163 – –/–/–
Frequency 0.0792 – 0.2846 – 0.4270 – –/–/–

LeToR 0.0836† +5.61% 0.2980† +4.70% 0.4454† +4.31% 8037 / 48493 / 6770
KCE (-EF) 0.0714 −9.77% 0.2812 −1.18% 0.4321† +1.20% 6936 / 48811 / 7553
KCE (-E) 0.0925†‡ +16.78% 0.3172†‡ +11.46% 0.4672†‡ +9.41% 11676 / 43294 / 8330
KCE 0.0946†‡ +19.44% 0.3215†‡ +12.96% 0.4719†‡ +10.51% 12554 / 41461 / 9285

Table 6.3: Event salience performance. (-E) and (-F) marks removing Features and Entity
information from the full KCM model. The relative performance differences are computed against
Frequency. W/T/L are the number of documents a method wins, ties, and loses compared
to Frequency. † and ‡ mark the statistically significant improvements over Frequency†,
LeToR‡ respectively.

6.7.1 Event Salience Performance
We summarize the main results in Table 6.3.
Baselines: Frequency is the best performing baseline. Its precision at 1 and 5 are higher than
40%. PageRank performs worse than Frequency on all the precision and recall metrics. Location
performs the worst.
Feature Based: LeToR outperforms the baselines significantly on all metrics. Particularly,
its P@1 value outperforms the Frequency baseline the most (4.64%), indicating a much better
estimation on the most salient event. In terms of AUC, LeToR outperforms Frequency by a large
margin (11.19% relative gain).
Feature Ablation: To understand the contribution of individual features, we conduct an ablation
study of various feature settings in Table 4.5. We gradually add feature groups to the Frequency
baseline. The combination of Location (sentence location) and Frequency almost sets the per-
formance for the whole model. Adding each voting feature individually produces mixed results.
However, adding all voting features improves all metrics. Though the margin is small, 4 of them
are statistically significant over Frequency+Location.
Kernel Centrality Estimation: The KCE model further beats LeToR significantly on all metrics,
by around 5% on AUC and precision values, and by around 10% on the recall values. Notably,
the P@1 score is much higher, reaching 50%. The large relative gain on all the recall metrics and
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Feature Groups P@1 P@5 P@10 R@1 R@5 R@10 AUC

SL 0.3548 0.3069 0.2497 0.0807 0.2671 0.3792 0.5226
Frequency 0.4536 0.4018 0.3440 0.0792 0.2846 0.4270 0.5732

+ SL 0.4734 0.4097 0.3513 0.0835 0.2976 0.4436 0.6354
+ SL + Event 0.4726 0.4101† 0.3516 0.0831 0.2969 0.4431 0.6365†

+ SL + Entity 0.4739 0.4100 0.3518 0.0812 0.2955 0.4418 0.6374
+ SL + Entity + Event 0.4739 0.4100 0.3518† 0.0832 0.2974 0.4452† 0.6374†

+ SL + Entity + Event +
Local

0.4754† 0.4100 0.3517† 0.0837 0.2981 0.4454† 0.6373†

Table 6.4: Event Salience Feature Ablation Results. The + sign indicates adding feature groups to
Frequency. SL is the sentence location feature. Event is the event voting feature. Entity
is the entity voting feature. Local is the local entity voting feature. † marks the statistically
significant improvements over +SL.

the high performance on precision show that KCE works really well on the top of the rank list.
Kernel Ablation: To understand the source of performance gain of KCE, we conduct an ablation
study by removing its components: -E removes of entity kernels; -EF removes the entity kernels
and the features. We observe a performance drop in both cases. Without entities and features, the
model only using event information still performs similarly to Frequency. The drops are also a
reflection of the small number of events (≈ 60 per document) comparing to entities (≈ 200 per
document). The study indicates that the relational signals and features contain different but both
important information.
Discussion: The superior results of KCE demonstrate its effectiveness in predicting salience. So
what additional information does it capture? We revisit the changes made by KCE: 1. it adjusts the
embeddings during training. 2. it introduces weighted soft count kernels. However, the PageRank
baseline also does embedding tuning but produces poor results, thus the second change should
be crucial. We plot the learned kernel weights of KCE in Figure 6.2. Surprisingly, the salient
decisions are not linearly related, nor even positively correlated to the weights. In fact, besides the
“Exact Match” bin, the highest absolute weights actually appear at 0.3 and -0.3. This implies that
embedding similarities do not directly imply salience, breaking some assumptions of the feature
based model and PageRank.
Case Study: We inspect some pairs of events and entities in different kernels and list some
examples in Table 6.5. The pre-trained embeddings are changed a lot. Pairs of units with different
raw similarity values are now placed in the same bin. The pairs in Table 3 exhibit interesting
types of relations: e.g.,“arrest-charge” and “attack-kill” form script-like chains; “911 attack”
forms a quasi-identity relation [173] with “attack”; “business” and “increase” are candidates as
frame-argument structure. While these pairs have different raw cosine similarities, they are all
useful in predicting salience. KCE learns to gather these relations into bins assigned with higher
weights, which is not achieved by pure embedding based methods. The KCE has changed the
embedding space and the scoring functions significantly from the original space after training.
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Word2Vec Kernel

attack kill 0.69 0.3
arrest charge 0.53 0.3
USA (E) war 0.46 0.3
911 attack (E) attack 0.72 0.3
attack trade 0.42 0.9
hotel (E) travel 0.49 0.9
charge murder 0.49 0.7
business(E) increase 0.43 0.7
attack walk 0.44 -0.3
people (E) work 0.40 -0.3

Table 6.5: Examples of pairs of Events/Entities in the kernels. The Word2vec column shows the
cosine similarity using pre-trained word vectors. The Kernel column shows the closest kernel
they belong after training. Items marked with (E) are entities.

This partially explains why the raw voting features and PageRank are not as effective.

6.7.2 Intrusion Test Results
Figure 6.3 plots results of the intrusion test . The left figure shows the results of setting 1: adding
non-salient intruders. The right one shows the results of setting 2: adding salient intruders. The
AUC is 0.493 and the SA-AUC is 0.753 if all intruders are added.

The left figure shows that KCE successfully finds the non-salient intruders. The SA-AUC is
higher than 0.8. Yet the AUC scores, which include the rankings of non-salience events, are rather
close to random. This shows that the salient events in the origin documents form a more cohesive
group, making them more robust against the intruders; the non-salient ones are not as cohesive.

In both settings, KCE produces higher SA-AUC than Frequency at the first 30%. However, in
setting 2, KCE starts to produce lower SA-AUC than Frequency after 30%, then gradually drops
to 0.5 (random). This phenomenon is expected since the asymmetry between origins and intruders
allow KCE to distinguish them at the beginning. When all intruders are added, KCE performs
worse because it relies heavily on the relations, which can be also formed by the salient intruders.
This phenomenon is observed only on the salient intruders, which again confirms the cohesive
relations are found among salient events.

In conclusion, we observe that the salient events form tight groups connected by discourse
relations while the non-salient events are not as related. The observations imply that the main
scripts in documents are mostly anchored by small groups of salient events (such as the “Trial”
script in Example 6.1). Other events may serve as “backgrounds” [41]. Similarly, Choubey et al.
[44] find that relations like event coreference and sequence are important for saliency.
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Figure 6.2: Learned Kernel Weights of KCE

6.8 Conclusion
In this chapter we describe two salient detection models, based on lexical relatedness and semantic
relations. The feature-based model with lexical similarities is effective, but cannot capture
semantic relations like scripts and frames. The KCE model uses kernels and embeddings to
capture these relations, thus outperforms the baselines and feature-based models significantly. All
the results are tested on our newly created large-scale event salience dataset. While the automatic
method inevitably introduces noises to the dataset, the scale enables us to study complex event
interactions, which is infeasible via costly expert labeling.

Our case study shows that the salience model finds and utilize a variety of discourse relations:
script chain (attack and kill), frame argument relation (business and increase), quasi-identity (911
attack and attack). Such complex relations are not as prominent in the raw word embedding
space. The core message is that a salience detection module automatically discovers connections
between salience and relations. This goes beyond prior centering analysis work that focuses on
lexical and syntax and provide a new semantic view from the script and frame perspective.

In the intrusion test, we observe that the small number of salient events are forming tight
connected groups. While KCE captures these relations quite effectively, it can be confused by
salient intrusion events. The phenomenon indicates that the salient events are tightly connected,
which form the main scripts of documents.

In this chapter, we have shown that we can use indirect supervision signals to reveal many
interesting semantic relations between discourse phenomena and salience. Some of them are not
directly related to our proposed task. For example, our study suggests that core script information
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Figure 6.3: Intruder study results. X-axis shows the percentage of intruders inserted. Y-axis is
the AUC score scale. The left and right figures are results from salient and non-salient intruders
respectively. The blue bar is AUC. The orange shaded bar is SA-AUC. The line shows the
SA-AUC of the frequency baseline.

may reside mostly in the salient events. In this proposal, we plan to use similar methods to reveal
other semantic knowledge from data, with a focus on frames and scripts.
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Chapter 7

Cross-document Event Identity via Dense
Annotation

7.1 Introduction
Coreference resolution is the task of identifying events (or entities) that refer to the same underly-
ing activity (or objects). Accurately resolving coreference is a prerequisite for many NLP tasks,
such as question answering, summarization, and dialogue understanding. For instance, to get
a holistic view of an ongoing natural disaster, we need to aggregate information from various
sources (newswire, social media, public communication, etc.) over an extended period. Often this
requires resolving coreference between mentions across documents.1

Recasens et al. [174] defines coreference as “identity of reference”. Therefore, modeling event
coreference requires understanding the extent of the shared identity between event mentions. Nu-
merous factors determine this identity, including the semantics of the event mention, its arguments,
and the document context. Resolving coreference across documents is more challenging, as it
requires modeling identity over a much longer context. To this end, we identify two major issues
with existing cross-document event coreference (CDEC) datasets that limit the progress on this
task. First, many prior datasets often annotate coreference only on a restricted set of event types,
limiting the coverage of mentions in the dataset. Second, many datasets and models insufficiently
tackle the concept of event identity. As highlighted by Hovy et al. [101], the decision of whether
two mentions refer to the same event is often non-trivial. Occasionally, event mentions only share
a partial identity (quasi-identity). In this work, we present a new dataset for CDEC that attempts
to overcome both issues.

Earlier efforts on CDEC dataset collection were limited to specific pre-defined event types,
restricting the scope of event mentions that could be studied. In this work, we instead annotate
mentions of all types, i.e., open-domain events [5], and provide a dense annotation [27] by
checking for coreference relationship between every mention pair in all underlying document
pairs. We compile documents from the publicly available English Wikinews.2 To facilitate
our goal of dense annotation of mentions and their coreference, we develop and release a new

1A mention is a linguistic expression in text that denotes a specific instance of an event.
2https://en.wikinews.org/
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That quake was followed by
as many as 60 aftershocks

for at least a week, with some
ranging as high as magnitude 7.8.

It was first
reported

to be a 7.3
aftershock.

Some smaller
aftershocks with

magnitudes between
5.2 and 5.7 were

also reported
in the region.

✘

✔✔

Figure 7.1: An illustration of the quasi-identity nature of events. The mention ‘[60] aftershocks’
is only partially identical to the two mentions ‘[smaller] aftershocks’ and ‘[7.3] aftershock’,
thus leading to two partial coreference links (✔). Interestingly, the third mention pair is non-
coreferential (✘), indicating that partial coreference need not satisfy the transitivity property.

easy-to-use annotation tool that allows linking text spans across documents. We crowdsource
coreference annotations on Mechanical Turk.3

Prior work has attributed the quasi-identity behavior of events to two specific phenomena,
membership and subevent [101]. However, its implications in cross-document settings remain
unclear. In this work, we specifically focus on a cross-document setup. As highlighted by
Recasens et al. [176], a direct annotation of quasi-identity relations is hard because annotators
might not be familiar with the phenomenon. Therefore, we propose a new annotation workflow
that allows for easy determination of quasi-identity links. To this end, we collect evidence for time,
location, and participant(s) overlap between corefering mentions. We also collect information
regarding any potential inclusion relationship between the mention pair.

Our workflow allowed us to empirically identify a new type of quasi-identity, spatiotemporal
continuity, in addition to the existing types defined by Hovy et al. [101]. Figure 7.2 illustrates this
phenomenon using the case of [Haitian cholera] outbreak. The event gradually evolves over space
and time, leading to cases of partial coreference. Additionally, traditional coreference annotations

3https://www.mturk.com/
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(October 23, 2010) Nearly 200
people are confirmed dead and
approximately 2600 are ill in a

central Haitian cholera outbreak.

(October 26, 2010)
At least 259 people
are dead and over
3000 people have

been infected
in the Haitian

cholera outbreak.

(October 28, 2010)
The Haitian cholera
outbreak has killed

292 people and
infected over 4000,

according to the
Haitian government.

✔

✔ ✔

Figure 7.2: An illustration of the quasi-identity nature of events. The event [Haitian cholera]
‘outbreak’ is expressed by instances with varying counts of infections and deaths. The identity of
this event continuously evolves over space and time, attributed to a new type of quasi-identity,
spatiotemporal continuity.

cluster mentions together. However, this methodology can be misleading when dealing with
cases of quasi-identity (see §7.5). To overcome this limitation, we frame our annotation task as a
(cross-document) mention pair linking. The proposed task simplifies the annotation process by
avoiding merging quasi-identical mentions into a single cluster.

The main contributions of our work can be summarized as follows,
• We present an empirical study of the quasi-identity of events in the context of CDEC. In

addition to providing evidence for previously studied types of quasi-identity (membership,
subevent), we identify a novel type relating to the spatiotemporal continuity of events.

• We release a densely annotated CDEC dataset, CDEC-WN, spanning 198 document pairs
across 55 subtopics from English Wikinews. The dataset is available under an open license.
To serve as a benchmark for future work, we provide two baselines, lemma-match, and a
BERT-based cross-encoder.

• To efficiently collect evidence for quasi-identity, we develop a novel annotation workflow
built upon a custom-designed annotation tool. We deploy the workflow to crowdsource
CDEC annotations from Mechanical Turk.

In the upcoming sections, we first position our work within the existing CDEC literature (§7.2).
We then describe our methodology for preparing the source corpus (§7.3), and our crowdsourcing
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setup for collecting coreference annotations on this corpus (§7.4). In §7.5, we present a study of
quasi-identity of events in our dataset. Finally, in §7.6, we present two baselines models for the
proposed dataset.

7.2 Related Work
Event Coreference: Widely studied in the literature, with datasets curated for both within and
cross-document tasks. ACE 2005 [210], OntoNotes [100], and TAC-KBP [144] are commonly
used benchmarks for within-document coreference. For cross-document coreference, ECB+ [51]
is a widely popular benchmark and is an extended version of the original ECB dataset [15].
ECB+ suffers from a major limitation with coreference annotations restricted to only the first few
sentences in the documents. However, CDEC is a long-range phenomenon, and there is a need for
more densely annotated datasets.

Many other datasets have since been curated for the task of CDEC. Some related works
include, MEANTIME [141], Event hoppers [188], Gun Violence Corpus (GVC) [209], Football
Coreference Corpus (FCC) [26], and Wikipedia Event Coreference (WEC) [67]. However, most
CDEC systems are still evaluated primarily on ECB+. Additionally, all of these datasets do not
account for the quasi-identity nature of events.

Though compiled from Wikinews, CDEC annotations in the MEANTIME corpus were limited
to events with participants from a pre-defined list of 44 seed entities. While the FCC corpus was
also crowdsourced, the annotation unit was an entire sentence instead of a single event mention.
WEC corpus uses hyperlinks from Wikipedia but primarily handles referential events. In this
work, we use open-domain events and treat an event mention as our annotation unit. We collect
coreference links across all the mention pairs from all the underlying document pairs.

Event Identity: Recasens et al. [174] postulated entity coreference as a continuum, with
identity, non-identity and near-identity relations. In a follow-up work [176], they identify near-
identity relations using the disagreement between annotators. They say subjects are not fully aware
of the near-identity behavior, therefore making direct annotation collection hard. The continuum
idea has since extended to events [101]. Determining if two event mentions are identical is
not a trivial decision. It depends on the arguments of the mentions (often underspecified in the
local context), the semantics of the mention, and the document context. In this work, we are
specifically interested in cross-document coreference. Wright-Bettner et al. [217] studied the
impact of the subevent relationship on quasi-identity, but a more general annotation framework
is missing. Accurately capturing event identity is critical to CDEC dataset construction and
the subsequent modeling. Therefore, we qualitatively study this phenomenon by collecting
supplementary information with each coreference link.

7.3 Corpus Preparation
In our goal of curating a CDEC dataset, we first needed to identify documents that exhibit cross-
document coreference. We now describe our document collection process and our methodology
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for annotating event mentions in these documents.

Document Selection: To facilitate the redistribution of the documents under an open license, we
prioritized collecting the documents from publicly available news sources. We chose Wikinews
for three key reasons. First, the news articles were sourced from trusted news outlets and reported
impartially. Second, these articles are available under an open license (CC BY 2.5), allowing easy
redistribution. Finally, each article is human-labeled with categories (e.g., Disaster and accidents,
Health, Sports, etc.),4 as we describe later, this meta-information plays a significant role in our
dataset collection. We use the July 1st, 2020 dump of English Wikinews, which contains a total
of 21k titles (or articles/documents). These news articles are timestamped from November 2004
to July 2020. Annotating coreference between every document pair in Wikinews is infeasible.
Therefore, we first identify groups of related news articles. Articles within a given group usually
describe a part of a developing news story or storyline.

Identifying Storylines: To identify these latent storylines, we first construct an undirected
Wikinews graph (W ) with articles as nodes and add an edge between two nodes if one is mentioned
under the “Related News” section in the other. We then identify cliques (CW ) (i.e., fully connected
sub-graphs) in the Wikinews graph, which constitute our potential set of storylines. While the
articles within each clique are related, we also want to minimize the relatedness of articles across
cliques. Therefore, we construct a new graph (M ), where each clique (∈ CW ) is a node, and an
edge is added between two nodes if the two cliques are not disjoint or if any two articles in the two
cliques share an edge in the Wikinews graph (W ). Finally, we extract maximal independent sets
from M that correspond to separate storylines. Among the multiple feasible maximal independent
sets, we optimize for maximum overlap in Wikinews categories of articles within each clique.

This algorithm satisfies two requirements of a CDEC dataset. First, within each storyline, all
articles are related to each other. Second, articles from different storylines aren’t adjacent in the
Wikinews graph (W ); thereby, they are very likely unrelated.

For this work, we narrow our focus only to articles in the “Disaster and Accidents” category
on Wikinews.5 Following the terminology of prior work, our dataset constitutes of a single topic
(Disaster and accidents) and 55 subtopics (individual storylines). We restrict CDEC annotations
to subtopics that contain 3 or 4 documents. Our algorithm aims for completeness of the CDEC
dataset by maximizing for intra-subtopic and minimizing inter-subtopic coreference.

Event Mention Identification: To annotate the event mentions in the above-collected docu-
ments, we first run a combination of mention detection systems. Specifically, we use the OpenIE
system [189] from AllenNLP [83] and an open-domain event extraction system [5]. The former
is effective at extracting verbal events, whereas the latter is good at nominal events. In contrast
to most prior work, we do not restrict the mentions to specific event types or salient events. We
believe it is important to study all underlying events to achieve a complete understanding of the
corpus. Since the quality of mention identification is critical to our CDEC dataset, we ask an

4https://en.wikinews.org/wiki/Wikinews:Categories_and_topic_pages
5https://en.wikinews.org/wiki/Category:Disasters_and_accidents

89

https://en.wikinews.org/wiki/Wikinews:Categories_and_topic_pages
https://en.wikinews.org/wiki/Category:Disasters_and_accidents


# topics 1
# subtopics 55
# documents 176
# sentences per doc (avg.) 14.6
# tokens per doc (avg.) 344
# event mentions 7220
# mentions per doc (avg.) 41

# document pairs 198
# CDEC links 4282
# CDEC links per document pair 21.6

# full coreference links 2914
# partial coreference links 1368

Table 7.1: An overview of the compiled CDEC dataset.

expert to go through the automatically identified mentions and add/edit/delete mentions using the
Stave annotation tool [122].6

Table 7.1 presents the overall statistics of our document corpus. Our documents are ∼14.6
sentences long, comparable to prior work, ECB+ (16.6), GVC (19.2), and FCC (34.4). However,
our documents are significantly more dense in terms of event mentions. Our documents contain
∼41 mentions (on avg.), much higher compared to prior work, ECB+ (15.3), GVC (14.3), FCC
(5.8). Given the dense nature of our documents, we appropriately design our annotation task and
interface.

7.4 Annotating Coreference via Crowdsourcing
Corefering event mentions share their identity. However, the extent of sharing for them to
be considered coreferential is unclear. To empirically study this behavior, we crowdsource
annotations on Mechanical Turk. We use the crowd workers’ responses to analyze the influence
of quasi-identity on coreference decisions.

7.4.1 Annotation Task
The input to our annotation task constitutes a pair of documents, with all event mentions pre-
identified. Annotator iterates through every mention on the left document and select corefering
mentions from the right document. We also provide the document titles and publication dates to
help set the context for the articles. Note that we focus solely on cross-document coreference in
this work and leave the addition of within-document links to future work.

6the expert annotator is an author of this work.
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Prior work has highlighted the difficulty in capturing event coreference, specifically in cases
where the mentions are only quasi-identical [101]. Notably, Recasens et al. [176] found direct
annotation of partial identity to be a difficult task. Therefore, we propose to analyze this behavior
by collecting supplementary information from the annotators. For each coreference link created
by an annotator, we ask them four follow-up questions, 1. overlap in location, 2. overlap in time,
3. overlap in participants, and 4. potential inclusion relationship.7 Annotators implicitly consider
these aspects when making a coreference decision; therefore, responding to these questions won’t
increase the annotators’ cognitive load significantly. As we show in §7.5, the responses to these
questions help us tease apart the cases of partial identity.

Unlike within-document coreference, disjoint narratives between documents often complicate
CDEC annotation tasks. Wright-Bettner et al. [218] analyzed this behavior in detail and proposed a
new contains-subevent label for within-document links that improved annotator agreement
and reduced inconsistencies. However, they rely on experts to create the within-doc contains-
subevent label beforehand. Instead, we focus solely on cross-document links and frame the
task as a simple pair-wise classification. Our framing allows non-expert annotators to make
decisions without concern for complex granularity issues. Our follow-up question regarding
inclusion facilitates a post hoc analysis of the event granularities in our dataset.

To ensure completeness of our CDEC dataset, we collect annotations for each pair of doc-
uments in a given subtopic (§7.3). As highlighted earlier, the quasi-identity of events may or
may not allow for the application of transitivity property. Therefore, in our dataset, we cannot
expand coreference links using transitivity. So collecting annotations between each pair in a given
subtopic is necessary.

Annotation Guidelines: Events are commonplace in the newswire; therefore, it is feasible
to explain the concept of events and their coreference via simple example-based guidelines. In
our guidelines, we first define events and then provide numerous examples of identical and non-
identical event mentions, with detailed explanations. Following prior work [188], we rely on the
annotator’s intuition to decide coreference.8

7.4.2 Annotation Tool
To efficiently crowdsource annotations, we require a tool that is both easy-to-use and customizable
to our workflow. For this purpose, we build upon the Forte9 and Stave10 toolkits [122]. We
extend both the toolkits to support cross-document linking as required by our annotation task.
Figure 7.3 presents a snapshot of our annotation interface. We highlight event mentions in both
the documents and allow the annotator to iterate through each mention on the left document. In
addition to dedicated links to instructions and examples, we provide on-screen instructions to
assist the annotator in real-time. We also use an English NER tool [130] to highlight the named
entities in the documents. These entities help the annotator keep track of various event participants
in the two documents.

7see Table A.11 in Appendix for the exact formulation of these follow-up questions.
8see A.2 in Appendix for complete guidelines.
9https://github.com/asyml/forte

10https://github.com/asyml/stave
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Figure 7.3: Tool for annotating cross-document event coreference. The two documents are shown
side-by-side, with event mentions pre-highlighted. We provide on-screen instructions as well as
dedicated pages for viewing detailed instructions and examples. As seen in the example here, we
allow annotation of every pair of mentions in the given document pair. In our annotation effort,
we present every pair of related documents on this tool, leading to a densely annotated dataset.

We utilize this tool for our entire dataset collection. While we show an application of our
annotation tool for CDEC, we believe it’s adaptable to other cross-document tasks like entity
coreference and event/entity relation labeling tasks. We will release our toolkit to encourage
future work on cross-document NLP tasks.

7.4.3 Collecting CDEC annotations
We crowdsource annotations for CDEC using Amazon Mechanical Turk (MTurk). Each Human
Intelligence Task (HIT) constitutes annotating cross-document links for one pair of documents.
We obtained IRB approval and set our HIT price based on preliminary studies.11 On MTurk,
we restricted our HITs to crowd workers from the US and set our qualification thresholds for %
HITs, and total HITs approved as 95% and 1000 respectively. We paid a fair compensation of
$10.9/hour on average.12 Our annotation task requires proficiency in English, as well as a good
understanding of event coreference. To this end, we attach a qualification test with eight yes/no
questions regarding event coreference, with a qualification threshold of 75%.13

For each document pair, we collected annotations from three different crowd workers. In each
task, crowd workers go through the two documents and develop a high-level understanding of the
news story. They then iterate through the mentions in the left document, in the narrative order, to
identify potential cross-document coreference links. From our preliminary studies, we found that
annotators spend considerable time reading the two documents. Therefore, to make the best use
of the crowd workers’ time and effort, we group HITs that constitutes document pairs from the

11see A.1 in Appendix for more details.
12The median pay was slightly higher at $16.3/hour. Both mean and median pay are above the current minimum

wage requirements in the United States.
13see A.4 in Appendix for the test format and the questions.
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same subtopic. This way, if the crowd worker chooses to, they can annotate the entire subtopic
in one sitting, sharing their understanding of a document from one HIT to the next. In total, we
collected annotations for 198 document pairs, spanning 176 unique documents and 55 subtopics
from 46 crowd workers.

Inter Annotator Agreement (IAA): For each pair of documents, we collect annotations from
three crowd workers. Our setup allows the annotator to decide coreference for every mention pair.
To measure IAA, we associate a value to each mention pair (corefering or non-corefering) and
compute Krippendorff’s α. For coreference links, we observed an α of 0.46, indicating moderate
agreement [6].14 Additionally, we compare the impact of the quasi nature of coreference on the
annotator agreement. In our dataset, 31% of the full-coreference links have a perfect majority (3/3
annotators). However, only 13% of the partial-coreference links have the same (see section 7.5
for the methodology used to determine partial coreference). This sharp contrast illustrates the
difficulty in capturing partial coreference links.

Selecting CDEC links: For each pair of mentions, we take a majority vote on the three
crowdsourced annotations. In our preliminary analysis, we found many valid coreference links
annotated by just one crowd worker. While we encourage the crowd workers to annotate every
pair of corefering mentions, they occasionally miss links. Therefore, to ensure completeness of
our dataset, we use an adjudicator to go through the single-annotator links to decide if they are
in-fact corefering or not.

Table 7.1 presents an overview of the compiled CDEC dataset. Unlike prior work, we do
not create mention clusters by expanding the links via transitive closure. As we show in §7.5,
quasi-identity of events warrants the need to analyze coreference at the level of mention pairs
instead of clusters. (illustrated in Figure 7.1)

7.4.4 Dataset Validation
To facilitate benchmarking future coreference resolution models, we split our dataset into train
and test. Of the 55 subtopics, 40 are for model training and development, and 15 are for the
unseen test set. Given the importance of the test set quality, we perform expert validation on
a randomly selected subset of 18 document pairs from our test set. The expert inspected the
annotated coreference links in the subset and found 97.5% precision (549/563 were corefering).
On the other hand, measuring the recall is hard due to a large number of mention pairs. Therefore,
we specifically focus on two types of potentially missing coreference links, 1. mention pairs that
share the same head lemma (but not annotated as corefering), 2. mention pairs that are part of
a non-transitive triplet.15 Upon inspection by the expert, we find that majority of lemma-match
links are non-corefering (50/565 were corefering), while a majority of non-transitive pairs are

14It’s important to note that we compute IAA on our entire dataset. Our IAA score is comparable to those of
quasi-relations from Hovy et al. [101].

15(EA, EB , EC) is a non-transitive event triplet if EA corefers with EB , EB corefers with EC , but EA and EC

are non-corefering.
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Figure 7.4: A taxonomy of event identity. While full and null identities are well understood, the
definition of partial identity is still evolving. We present the three types of partial identity found
in our dataset.

corefering (149/173 were corefering). This result indicates the scope for improvement in tackling
missing coreference links. We leave this extension to future work.

7.5 Studying Quasi-Identity of Events
Numerous factors determine the identity of an event mention, including the semantics of the
mention, arguments (place, time, and participants), and the overall document context. Therefore,
overlap in these factors determines the extent of coreference between two given mentions. This
overlap leads to cases of partial (quasi-) identity. Our annotation workflow allows for empirical
investigation of this phenomenon, and we summarize our observations through a taxonomy of
event identity in Figure 7.4. Except for Wright-Bettner et al. [218], prior CDEC datasets do not
account for the partial identity during the annotation process. Hovy et al. [101] have previously
proposed two types of partial identity, membership, and subevent. In addition to providing
evidence for these two types in our dataset, we also identify a novel type of partial identity termed
as spatiotemporal continuity.

Collecting Partial Identity: We use the responses to follow-up questions for qualitatively
analyzing cases of partial identity. We consider a link to be a case of partial identity if a strict
majority of annotators indicate one of the following. First, there is an inclusion relationship
between corefering mentions. Second, the two overlap in place, time, or participants. With this
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screening methodology, we found ∼32% of the total CDEC links to be candidates for partial
identity (Table 7.1). We qualitatively analyze the dataset and identify three types of partial identity,
1. Membership, 2. Subevent, and 3. Spatiotemporal continuity. Table 7.2 illustrates each type
with examples from our compiled dataset.

Membership: An event mention Ea is a member of event mention Eb. Consider the two
sentences, 1a, and 1b. The mention ‘fire’ (1a) denotes a specific wildfire, whereas ‘wildfires’
(1b) denotes a group of wildfires, including the one in 1a. The concept of partial identity
often challenges the transitivity assumption of coreference. For instance, the mentions [smaller]
‘aftershocks’ (2b) and [7.1] ‘aftershock’ (2a) share no identity, thereby, non-coreferential. However,
both the mentions partially corefer with [60] ‘aftershocks’ from 2c.

Subevent: An event mention Ea is a subevent of event mention Eb. This behavior can be seen
in the coreference between the ‘crash’ event from 3a, and the ‘accident’ event from 3b. While
the ‘accident’ event involves many individual events, derailed, caught fire, spill chemical, and
release fumes, it partially corefers with the event ‘crash’ from 3a that likely refers only to the
derailment. Similarly, consider the case of the Boston Marathon Bombing in examples 4a and 4b.
The ‘bombing’ event from 4a refers to the whole incident, whereas the ‘explosions’ in 4b refers to
specific subevents of the ‘bombing’.

Spatiotemporal Continuity: The identity of an event can continuously evolve over space and
time. Consider the two mentions, ‘storm’ and ‘Hurricane’ from Table 7.2 (5a, 5b). At a high level,
these mentions are corefering because they denote the same event (storm Richard). However,
the expressions of this event differ slightly across the two documents. In the former, it’s a storm
(with 70mph winds) having an impact in Honduras, whereas, in the latter, it’s a hurricane (with
90mph winds) impacting Belize. Similar behavior is visible with the [Haitian cholera] ‘outbreak’
event from Figure 7.2. The outbreak gradually evolves, with growing infection (2600→ 3000
→ 4000) and deaths (200 → 259 → 292). In both of these examples, we observe the event
changes gradually and is always continuous in both space and time dimensions. To the best
of our knowledge, we are the first to propose this identity title under the event quasi-identity
framework16.

In line with prior work on entities [172], we believe identity and coreference of events to
be a continuum. Our dataset already includes many instances of partial identity to support
this hypothesis. The above-described cases of partial identity (membership, subevent, and
spatiotemporal continuity) will pose new challenges to future dataset collection efforts. We
believe our annotation workflow and guidelines will be of use to future work.

In this section, we establish a clear case for tackling partial identity within the coreference
resolution task. However, in practical settings, the boundaries between full, partial, and null
identities remain fuzzy. As seen in our analysis on the inter-annotator agreement, humans find it
hard to identify cases of partial coreference. In the downstream coreference resolution task, users
are primarily interested in knowing if two given mentions share an identity or not. Therefore,

16We borrow the term spatiotemporal continuity from the Philosophy literature. It describes the properties of
well-behaved objects [213]. A similar treatment for entities is presented in Recasens and Hovy [172].
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we propose to view both full and partial identity under a single coreference label (‘coreference’)
and contrast them against cases with no shared identity (‘non-coreference’). Compared to prior
datasets, this presents new challenges in tackling partial identity within the ‘coreference’ label.

7.6 Baselines
We define the task as a mention pair classification problem. Due to the quasi-identity nature
of event mentions (§7.5), we do not cluster mentions in coreference groups. Additionally, we
consider both full and partial identity under the coreference label. We present two baseline models,
lemma-match, and a cross-encoder model. We split the dataset of 55 subtopics into train and test,
with 40 subtopics for training and development, and 15 subtopics for the held-out test set. For our
experiments, we assume gold mentions and subtopic information.17

Lemma-match: For our first baseline, we implement the traditional lemma-match baseline.
We use spacy’s large model18 to extract the head lemma of the event mentions, and consider two
mentions corefering if the lemma’s match. Following Upadhyay et al. [199], we also experiment
with a Lemma-δ baseline. In our experiments, we found the best dev performance with δ=0,
resolving to a simple lemma baseline. This could be due to our assumption of access to gold
subtopic information.

Cross-Encoder: As a second baseline, we implement BERT-based cross-encoder model. The
input consists of a pair of sentences with both mentions highlighted using special tokens to
indicate the start and end of mention spans (¡E¿, ¡/E¿). We first concatenate the two event-tagged
sentences (with [SEP] token) and pass it through a bert-base-uncased encoder. We then perform
mean pooling on the event start tags (¡E¿), and pass the pooled embedding through a linear
classification layer to predict coreference vs. non-coreference. For training the cross-encoder, in
addition to the positive coreference pairs, we generate two types of negative mention pairs. For
the first type, we collect non-coreference mention pairs from sentences that have a coreference
link between a different mention pair. For the second type, we extract non-coreference mention
pairs from random sentence pairs between the documents. During training, we use a dataset ratio
of 1:5:5 (positive:negative-I:negative-II). We use huggingface transformers [216], and train the
model using AdamW [126] with an initial learning rate of 2e-5. We also use a linear warmup
scheduler, with 10% of training steps for warmup. We finetune the # epochs and positive:negative
dataset ratio during the development stage (5-fold cross-validation) and use the best configuration
when training on the entire train set.

Results: Table 7.3 presents the results of our baselines. For model development, we perform
5-fold cross-validation on the training set (40 subtopics). To report the results on the held-out
test set (15 subtopics), we train the model’s best configuration on the entire training set. We
report precision, recall, and F1 scores of the coreference label averaged on five different runs.

17topic-level performance [28]
18en core web lg from https://spacy.io
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The lemma baseline only achieves an F1 score of 48.2, indicating that the proposed dataset is
lexically diverse. The cross-encoder improves upon the lemma baseline, especially on the recall.
Upon inspection of development set predictions, we observe two possible error cases for the
cross-encoder model. First, the model struggles at the cases of partial identity (‘explosion’ vs.
‘incident’ and ‘evacuate’ vs. ‘evacuations’). This drawback of cross-encoder indicates that the
model requires a deeper understanding of event identity. Second, the cross-encoder model is often
limited by the information available in a single sentence. It is known the event arguments are
often under-specified in the local context [66]; therefore, increasing the context to a paragraph or
the entire document might help improve the performance.

7.7 Conclusion
In this work, we present a study of the identity of events through annotation of cross-document
event coreference. We adopt a dense annotation approach to solve the problem that the transitivity
property does not hold for quasi-identity relations. To address the large amount of annotation work,
we use a crowdsourcing pipeline. We use a custom-designed annotation tool to collect coreference
annotations on a subset of English Wikinews articles. We release our dataset, CDEC-WN, under
an open license to encourage further research on event coreference. By collecting evidence for the
extent of shared identity between events, we identify three types of partial-identity, membership,
subevent, and spatiotemporal continuity, whereas the spatiotemporal continuity identity is first
proposed under the framework of event quasi-identity.

To serve as a benchmark for future coreference resolution systems, we provide results on
two baseline models, lemma-match and BERT-based cross-encoder. We believe that our work
will encourage further research on the identity of events in the context of CDEC. Potential future
directions include expanding CDEC-WN to include within-document coreference links, designing
coreference resolution systems that account for cases of partial identity between mentions, and
expanding the study of the partial identity of event coreference to new domains.
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Membership

1a The fire has burned about 4400 acres so far and 15 homes have been lost, however there have
been no reported injuries or deaths.

1b Reports say that the amount of people fleeing from their homes in California located in the United
States due to wildfires has reached the 1,000,000 mark as the fires continue to grow.

2a Several aftershocks have rocked the same area, the latest measuring 7.1, had a depth of 10 km. It
was first reported to be a 7.3 aftershock.

2b Some smaller aftershocks with magnitudes between 5.2 and 5.7 were also reported in the region.
2c That quake was followed by as many as 60 aftershocks for at least a week, with some ranging as

high as magnitude 7.8.

Subevent

3a A freight train in Lviv, Ukraine derailed, caught fire, and spilled a toxic chemical, releasing
dangerous fumes into the air early Tuesday morning (local time), and people who live near the
site of the crash are still becoming sick.

3b The available information about the phosphorous cloud following the railway accident in the
Ukraine last Monday is becoming more and more cryptic.

4a During the fifteen days of the trial, the prosecutors called 92 witnesses to testify as to the chaotic
scenes following the bombing.

4b Two explosions within seconds of each other tore through the finish line at the Boston Marathon,
approximately four hours after the start of the men’s race.

Spatiotemporal Continuity

5a Tropical storm Richard is nearing hurricane strength with winds of 70 mph (115 kph) as it lashes
Honduras with heavy rains

5b Hurricane Richard made landfall in Belize about 20 mi (35 km) south-southeast of Belize City
with winds of 90 mph (150 kph) at approximately 6:45 local time (0045 UTC) according to the
National Hurricane Center (NHC)

Table 7.2: An illustration of quasi-identity of event mentions across documents. These examples
cover the three identified types of quasi-identity, membership, subevent, and spatiotemporal
continuity.

Model Dev Test
P R F1 P R F1

Lemma-match 46.6 54.9 49.9 42.3 56.0 48.2

Cross-Encoder 43.1 75.4 54.3 45.9 77.3 57.6
± 0.6 ± 0.5 ± 0.5 ± 0.8 ± 1.1 ± 0.6

Table 7.3: Baseline results on development and test sets. For cross-encoder, we report the average
scores and their standard deviation across five runs.
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Chapter 8

How Language Models Learn about
Coreference

8.1 Introduction
Throughout this thesis, we have dived deeply into the complexities of event semantics and their
interactions with other discourse elements, recognizing their crucial role in natural language
understanding. We have also investigated ways to increase data availability for these tasks through
crowdsourcing and indirect supervision. In this chapter, we focus on Large Language Models
(LLMs), one of the most prominent methods for generalizing model ability across tasks via scaling.
LLMs can solve many NLP tasks very well, even achieves good performance on complex tasks.
Building on these advancements, we seek to answer the following research questions here:

1. How (well) do large language models (LLMs) manage the complexities inherent in event
semantics and anaphora resolution?

2. Given that models capable of solving complex semantic tasks tend to be large and hence
challenging to analyze, can we come up with effective analysis methods?

Winograd Schemas. We choose to use the Winograd Schemas to study these problems. The
Winograd Schema Challenge (WSC) [113] is designed to evaluate a model’s ability to resolve
coreference that requires common sense reasoning. Each schema consists of sentence pairs where
a single word change, often a key verb, leads to a completely different interpretation. Here is a
typical question from the Winograd Schemas: “The city councilmen refused the demonstrators a
permit because they (feared / advocated) violence.” Here, the pronoun “they” would be “the city
councilmen” if the verb is ‘feared‘, or “the demonstrators” if the verb is “advocated”. We argue
that the WSC provides an excellent venue to study our research questions.

Firstly, the schemas are challenging for language models but straightforward for humans. For
instance, Llama3 8B scores 76.1% on the Winogrande dataset [181], a adversarially designed
dataset that is challenging for models, whereas the human performance is 94.0%. Secondly,
studying the schemas allows us to examine how LLMs handle coreference beyond simple surface
matches. Notably, events play a crucial role here, as the key changes between pairs often involve
event verbs, aligning with our research theme. Additionally, observing how LLMs handle the
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WSC reveals how small textual changes lead to different predictions, providing insights into
the propagation of these perturbations through network layers. Lastly, the pairwise and subtle
differences between schema pairs offer a unique opportunity to design efficient analysis methods.

Circuit Analysis. While imperfect, LLMs can solve many Winograd Schemas without specific
training, suggesting they may develop internal representations or algorithms for these tasks.
Circuit analysis methods appear promising for investigating these algorithms. As part of recent
mechanistic interpretability research, circuit analysis seeks to reverse engineer the computa-
tions of powerful models like the Transformer [204], aiming to identify subgraphs that perform
human-interpretable algorithms [68]. Recent studies have shown promising results in uncovering
interpretable algorithms for specific tasks.

Figure 8.1: Top Left: the original IOI circuits identified by Wang et al. [211] on GPT2-small [170],
please refer to [211] for the detailed explanation of each head; Bottom Left: IOI circuit on GPT-2
using Information Flow Routes (IFR) [77], this graph includes the heads found in [211] and other
general heads; Right: the IOI circuit on Amber-7B [124] using IFR. The visualization is created
with the LM Transparency Tool [198]: each green dot denotes the representation of the token
at this point, the green edges denote the attention heads, and the purple squares represents the
Feed-Forward Layers. While the predictions are not shown in this figure, the prediction of both
circuits are “Mary”.
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For example, circuit analysis of the Indirect Object Identification (IOI) task [211] reveals that
large language models use a straightforward algorithm with several functional attention heads to
solve the problem. An IOI task is based on sentences with a dependent clause: “When Mary and
John went to the store” and a main clause: “John gave a drink to”. And the task is to complete this
sentence by choosing between the two names. The more probable answer in this case is “Mary”.
It is shown that GPT2 implements a circuit that approximate the following simple algorithm with
a combination of attention heads (Fig. 8.1).

1. Identify all previous names in the sentence (Mary, John, John).

2. Remove all names that are duplicated (in the example above: John).

3. Output the remaining name.
Though this algorithm is only identified in very specific structures, such as when repeating

names are present, it demonstrates how language models can propagate information and develop
algorithms using network structures like residual streams and attention heads. It remains an
intriguing question how a circuit might be structured for more complex tasks, particularly those
involving semantic reasoning.

Our Approach. While complex large language models (LLMs) are more effective at handling
real semantic tasks, their complexity presents a significant challenge for circuit analysis. As shown
in Fig. 8.1, the search space and resulting circuits of a 7-billion-parameter model are much larger
than those of GPT-2-small (117 million parameters). Additionally, while previous studies have
mostly focused on analyzing a single algorithm or function, we believe that different Winograd
Schema tasks will involve a diverse set of “algorithms”. The expanded search space due to both
the larger model and the more complex question types makes a complete manual circuit analysis
nearly impossible. To overcome this challenge, we propose the following methods:

1. Narrow Down Data Samples: The setup of the Winograd Schemas allows us to focus on
samples that the model can answer reliably. We treat Winograd Schema tests as pairs, and
only consoder the model is correct on a pair when it is correct on both. We perform a
longitudinal study by evaluating the model at various training checkpoints to find pairs that
the model consistently answers correctly over time. The checkpoints are resources provided
by LLM360 [124], which we will introduce later in session 8.3.2. By narrowing down the
samples, we can focus on the ones where we can potentially find interesting circuits.

2. Automatic Circuit Finding: IOI circuits are initially found using a technique called activation
patching, which is costly and requires extensive human intervention, making it impractical
for larger LLMs on real tasks. Instead, we adopt recent automatic circuit discovery methods.
Specifically, we use the Information Flow Routes (IFR) algorithm [77], an attribution
method that replaces the need for patching. As demostrainted in [77] and Fig. 8.1, this
method can successfully identify the IOI circuit automatically.

3. Zoom in Key Subgraphs: We enhance the IFR algorithm with a simple contrastive method
that replaces the activation with the contrast activation value between pairs. This method
effectively highlights the key computational differences within a Winograd Schema pair,
revealing whether an LLM correctly picks up the context clues. We find that this technique
is important since the key circuit edges are often not picked up by the original IFR algorithm.
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With these tools, resources, and techniques, we are able to conduct model analysis. To gain
insights into how the model’s abilities emerge, we analyze the performance and circuits of LLMs
at various stages of pretraining. By comparing the circuits obtained at different checkpoints, we
hope to observe whether and when the model begins to form robust algorithms.

The rest of the chapter outlines our experimental setup and findings. We observe that language
models can quickly develop “shortcut” strategies for certain data samples, yet they also form
seemingly complex algorithms to solve Winograd Schemas. We hope these findings contribute to
a deeper understanding of how language models learn coreference resolution, offering valuable
insights for interpretability and the advancement of NLP model development.

8.2 Related Work
Interpretability and Circuit Study of LLMs. Mechanistic interpretability aims to reverse en-
gineer neural networks, focusing on understanding the internal mechanisms at work. A significant
paradigm in this field is the analysis of circuits, which originated with vision models and has
extended to transformer language models [92, 118, 137, 138, 155, 194, 203, 211]. Increasingly,
research has sought to characterize the individual components within these circuits, examining
attention heads [34, 86, 135, 156], neurons [80, 89, 180, 206, 207], and use methods such as
dictionary learning and sparse autoencoders [23, 103, 133] to learn interpretable features at scale.
More recently, advance have been made to conduct interpretation with scalable [77, 93, 146] and
automated methods [19, 48, 192], in place of conducting activation patching and examination
manually [156, 206]. However, due to the complexity of both the networks and the actual lan-
guage problems, most of the methods that try to uncover the LLM “algorithms” focus on small or
artificial tasks, or individual functional heads, where a simple human interpretable algorithm is
available, such as the Indirect Object Identification circuit [211], the Greater Than circuit [92],
the Correct Letter circuit [118], the Copy Suppression Head [135], the Successor Head [86], and
Gendered-Pronoun Resolution [206]. In this chapter, we instead study a real complex semantic
task, the Winograd Schemas.

Developmental Study of LLMs. To understand the development and emergence of abilities
in LLMs, extensive research has been conducted on their evolution throughout the pre-training
process. Recently, [193] examined whether circuit analyses remain consistent across different
stages of training and model scales. However, most prior work on developmental studies has
focused on making high-level claims about model performance and abilities, such as investigating
linguistic capabilities in syntax acquisition [219], word acquisition [33], and general skills like
memorization [17]. While these behavioral studies may guide research at a high level, they do not
reveal the internal implementation of the models.

In this chapter, we examine LLMs through both mechanical analysis and developmental study,
providing a more holistic view of LLM behaviors. Additionally, rather than focusing on small or
artificial problems, we study a challenging and complex linguistic phenomenon like the Winograd
Schema, using a modern 7B parameter model.
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8.3 Experiment Setup
In this section, we describe the experimental setup, including the datasets we used, details of the
algorithms and our solution to narrow down the search space.

8.3.1 Dataset
The Winogrand dataset. Our primary dataset for this study is Winogrande, a large dataset with
Winograd Schema-style questions, created via adversarial methods to reduce simple surface-level
biases. The original Winograd Schema Challenge (WSC) [113] dataset is not used because many
of the samples are available online and may have been seen by the model during pretraining. In
our preliminary analysis, we found that the AMBER model achieved a 78% 0-shot accuracy on
WSC, which should be too high for the model, indicating a potential data leak. Moreover, the
Winogrande dataset is larger, offering more samples for study. We run the experiments on the
1267 test samples from Winogrande.

We further categorized the dataset samples based on their difficulty for the LLM. We categorize
the samples into three buckets: simple bucket (correctly answered by checkpoints from first 30%
of pretraining), medium bucket (consistently answered correctly by checkpoints that go through
more than 30% of pretraining), and difficult bucket (not consistently answered correctly by any
checkpoints, until the end of training). The medium bucket should be the most interesting segment
since we believe the model may have found non-trivial circuits.

To study circuits in auto-regressive models, one constraint is that the task has to be “next
token prediction”. Most Winograd Schema data samples are formed as “filling the blank” and the
important clues to the answer are often towards the end. If we convert the task to a multiple-choice
question and ask the model to output the option, this will further involve confounding factors
such as attention heads that copy options [118]. To get around this problem, we manually curate
a few sentences from each bucket to move the “blank” to the end of the sentence. For example,
we convert the clause of the original sentence: “In the hotel laundry room, Emma burned Mary’s
shirt while ironing it, so the manager gave () a refund.” into “so the manager refunded ()”. Note
that this process is not always possible for all sentences. After these steps, we end up selecting 15
data samples (Fig. 8.1) to investigate closely on circuits.

8.3.2 LLM360
In order to perform the longitudinal study, we leverage the LLM360 checkpoints to examine how
language models learn about coreference, particularly through analyzing circuits formed during
the training process. Specifically, we use the AMBER model, we take 40 checkpoints evenly over
the whole pretraining process, including the final checkpoint. We provide an brief overview of
this model in this section.

Model Configurations. We trained a 7B parameter model named AMBER on approximately
1.26 trillion tokens (see Table B.2 for the dataset breakdown). The model shares architectural
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similarities with LLaMA 7B, including model dimensions, use of RMSNorm [222], and rotary po-
sitional embeddings (RoPE) at each layer of the network [190], a summary of model specification
is in Table B.2.

Model Checkpoints. LLM360 models are released with all intermediate checkpoints saved
during training, including model weights and optimizer states. These checkpoints enable continued
training from various starting points and facilitate post-training research.

Figure 8.2: AMBER’s performance on the Winogrande dataset across all 360 checkpoints (x-axis).
The evaluation is done with the common 5-shot setting. Our circuit analysis will be conducted in
a 0-shot setting to remove the influence of the in-context examples.

Metrics. The LLM360 project also provides access to detailed logs and intermediate metrics,
including system statistics, training logs, and evaluation metrics. Fig. 8.2 shows the model’s
performance improvement on Winogrande over time, landing at 64.24% at the end.

The availability of detailed metrics and intermediate checkpoints from the LLM360 project
enables this study. The metrics and checkpoints allow us to observe the development of specific
circuits over the course of training, providing insights into how the model learns to resolve complex
anaphora problems. Note that though the Pythia [18] project also provides model checkpoints
over the pretraining lifetime, AMBER is a modern language model that is larger and has better
performance on difficult datasets like the Winogrande.

8.3.3 Automatic Circuit Discovery
We adopt the Information Flow Routes algorithm (IFR) [77] to conduct automatic circuit analysis.
The Information Flow Routes algorithm identifies key subgraphs in a top-down manner by
tracing the contribution of each edge back through the network, starting from the final token
representation. In the information flow graph, nodes represent token representations and edges
represent operations that move information across these nodes. For example, token representations
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at different layers are connected through attention and residual stream edges. This method uses
attribution to determine edge importance, which is significantly faster than patching techniques.

The key of the algorithm is attribution, which is based on ALTI (Aggregation of Layer-Wise
Token-to-Token Interactions) [75], ALTI assumes that the importance of each vector (edge) to the
overall sum (node) is proportional to its proximity to the resulting sum. Formally, with the edge
values zi, and the sum y = z1 + · · ·+ zm,

importance(zj, y) =
proximity(zj, y)∑
k proximity(zk, y)

, (8.1)

proximity(zj, y) = max(−∥zj − y∥1 + ∥y∥1, 0). (8.2)

In a Transformer model, the key edges are the residual edges, and the ones from the feed-
forward layers and the attention layers. For multi-head attention, we consider each head as
independent edges. After computing the edge importance, we simply take a subgraph using a
cutoff threshold. Currently we do not have a way to find the threshold automatically. We find that
0.02 and 0.04, similar to the values used in [77], are reasonable and show interesting subgraphs
with the regular IFR run. However, we find that the contrastive method yields edge weights in
much lower magnitudes, and find a threshold around 0.002 to be more informative. Note that
there are no methods to guarantee finding the minimal viable circuit. We choose these values
to highlight the insights only, they may not generate faithful circuits (a circuit is faithful if all
edges outside the circuits would not affect the performance for this task [93, 211]). Detailed
formulations of the attention and feedforward layer edges are provided in Appendix B.2, and we
recommend readers refer to [75, 77] for more details.

Intuitively, it is logical to expect that the IFR algorithm, which traces the contribution of
each edge to the final prediction, would reveal the subgraph that solves the problem. However, it
remains uncertain whether the granularity of the weights can effectively identify all important
edges, particularly when it comes to subtle differences. This leads to the design of the following
method.

Narrow Down the Circuits. We further implement a contrastive method utilizing the pair
structure in Winograd Schemas. The algorithm computes the edge values for the LLM running
through both sentences in the pair. We denote the function M that takes a sentence S and computes
all the edge values with an LLM M(S) = E = {e1, e2, . . . , en}, then for a pair of Winograd
Schema sentences S1 and S2, we apply the following contrastive method:

Ec = M(S1)−M(S2) (8.3)

We replace the edge values E1 in the IFR algorithm with Ec. This method effectively cancels
out the activation values that are the same across both runs. We opt to simply calculate the
differences, as this approach preserves the units of the original values and is more compatible
with the original IFR algorithm. While more advanced contrastive methods may exist, they are
beyond the scope of this work.

In the Winograd Schema setting, this will cancel most of the activations since the two input
sentences differ only slightly, leaving only the values and networks impactful to the change of
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prediction. Note that we find that the scale of these values are much smaller, hence we use 0.002,
10% of the regular threshold.

8.4 How an LLM Solves Winograd Schemas
In this section, we present the experiment results and findings on how large language models
(LLMs) solve Winograd Schemas. Our analysis reveals the mechanisms and processes LLMs
use to resolve coreferences and understand event semantics. We leverage the Information Flow
Routes algorithm and our proposed methods to uncover critical circuits and provide insights into
the capabilities and limitations of LLMs in handling complex linguistic tasks.

We run zero-shot evaluation and circuit analysis over the 40 intermediate model checkpoints
(spaced evenly) from the AMBER checkpoint series, on the 15 selected pairs, as shown in Table 8.1.
The consecutive correct count indicates the its bucket (simple, medium or hard). Overall, the final
checkpoint’s accuracy is 0.64, and Figure 8.2 shows the performance improvement over time. The
model reaches around 0.65 at halfway through the training and does not significantly improve
afterwards. We find that a 7B model trained on 1.2 trillion tokens still struggles to predict the pairs
consistently. In the Winogrande dataset, we can form 273 pairs in the test set, and the model can
solve 75 of them with the final checkpoint, which is 27% of the total pairs. If we consider only
the pairs that the model can robustly solve (consecutive count more than 5), there are only 44 left,
representing 16% of the total. The fact that the model struggles with consistent predictions and its
final accuracy plateaus at halfway through training, indicating that this dataset is still challenging
to the model.

8.4.1 Circuit Development
We compute the circuit subgraphs over all the checkpoints with an edge filtering threshold of
0.02. We can compute how the circuit changes over time by measuring the similarity between
the graphs. We use the Jaccard similarity (J(A,B) = |A∩B|

|A∪B|) of the graph edges as a measure
for graph similarity. For each subgraph of the intermediate checkpoint, we compute its Jaccard
similarity with the subgraph of the final checkpoint. Figure 8.3 plots the Jaccard similarites of the
following sentences.

(4) In the hotel laundry room, Emma burned Mary’s shirt while ironing it, so the manager
scolded/refunded (Emma/Mary)

(5) They had to eat a lot to gain the strength they had lost and be able to work, they had too
much/little (work/strength)

Example 5 is from the simple bucket, where it consistently predicts the pair correctly after
25% of training progress. This is expected since making the prediction here does not require
extensive contextual reasoning. The shortcut strategy is that “too much work” is a much more
common phrase than “too little work”. In the next section, we show that the circuit subgraph of
the model focuses on a narrow part of the graph. The Jaccard similarity computed for its subgraph
is shown on the right, which is consistent most of the time but remains only slightly above 0.6.
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Sentence 1 Sentence 2 Options #Correct

Carla start doing sit-ups and pushups for
her weak spots. Her abs need the

Carla start doing sit-ups and pushups for
her weak spots. Her chest needs the

situps/ pushups 38

They had to eat a lot to gain the strength
they had lost and be able to work, they had
too much

They had to eat a lot to gain the strength
they had lost and be able to work, they had
too little

work/ strength 30

The stain in the bucket could not be cleaned
with the brush because of the soft

The stain in the bucket could not be cleaned
with the brush because of the tough

stain/ brush 30

Billy liked watching foreign movies with
subtitles unlike Jason because the original
language was hated by

Billy liked watching foreign movies with
subtitles unlike Jason because the original
language was loved by

Billy/ Jason 25

Emma had to pay less tax than Mary be-
cause less money was made by

Emma had to pay less tax than Mary be-
cause more money was made by

Emma/ Mary 22

Keeping the doors closed and the windows
opened kept the apartment cool, because
the heat was let out by the

Keeping the doors closed and the windows
opened kept the apartment cool, because
the heat was kept out by the

doors/ windows 18

The gas was not spilling out of the tank but
out of the hose because the leaky

The gas was not spilling out of the tank but
out of the hose because the sealed

hose/ tank 15

Of the two owners, Jessica was far worse
than Jennifer, because dogs will get beaten
by

Of the two owners, Jessica was far worse
than Jennifer, because dogs will get treated
by

Jessica/ Jennifer 12

The woman kept the bikini but returned the
top, because the wrong size of the

The woman kept the bikini but returned the
top, because the right size of the

bikini/ top 1

In the hotel laundry room, Emma burned
Mary’s shirt while ironing it, so the man-
ager scolded

In the hotel laundry room, Emma burned
Mary’s shirt while ironing it, so the man-
ager refunded

Emma/ Mary 1

The wooden doors at my friends work are
worse than the wooden desks at my work,
because the cheaper wood of the

The wooden doors at my friends work are
worse than the wooden desks at my work,
because the better wood of the

doors/ desks 0

The trader decided to buy wool and sell
cotton because the low price of the

The trader decided to buy wool and sell
cotton because the high price of the

wool/ cotton 0

The room at the hotel cost more than the
room at the inn because the nasty room at
the

The room at the hotel cost more than the
room at the inn because the lovely room at
the

hotel/ inn 0

The musician liked playing at the audi-
torium more than at the park because he
sounded quieter at the

The musician liked playing at the audi-
torium more than at the park because he
sounded louder at the

auditorium/ park 0

The clothing in the north was warmer than
the clothing in the south because there was
more snow in the

The clothing in the north was warmer than
the clothing in the south because there was
more sun in the

south/ north 0

Table 8.1: The selected Winogrande samples, all reformatted as next token prediction tasks. The
correct counts measure the number of consecutive checkpoints at which the model consistently
answers the question correctly until the final checkpoint.

Example 4 is a challenging sample from the medium bucket but on the edge of the hard one,
where the model only predicts it correctly at the end of the training. This indicates that the model
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Figure 8.3: Jaccard Similarity of the intermediate checkpoint circuit vs. the final checkpoint
circuit. The left figure is on a sentence from the medium bucket, the right figure is computed on a
sentence from the simple bucket.

might not be able to form a consistent algorithm for this sample in the early phase. This can be
observed from the Jaccard similarity graph, where the graph similarity fluctuates significantly
and is often below 0.5 in the early stages of training. The similarity increases for the final few
checkpoints, reaching as high as 0.8-0.9. In the next section, we find that the model seems to find
semantically meaningful circuits for this sentence. The circuit for this pair may start to form and
stabilize late in the training.

8.4.2 A Closer Look into the Circuits
Now we zoom into specific samples and study their circuit structures. We compute and visualize
the circuit subgraph with the original IFR method, and also with our constrastive method. We
show three examples, from each bucket respectively.

“Too much work” Circuit. We show the circuits found for Example 5 mentioned above. This
example is easily solved by the model. We suspect that the model may use a shortcut algorithm
that simply predicts “work” by only reading the clue “too much”, since “too much work” is a much
more common phrase compared with “too little work”. As expected, almost no edges from the
early context words such as “gain strength” are linked to the final prediction. The model simply
focus on the final two tokens “too much” or “too little”. We computed the contrastive graph for
this pair1, and the graph edges are almost empty except for the last token “little”, confirming this
hypothesis.

“Keep the Heat” Circuit. We suspect that the circuits for a pair from the medium bucket would
reveal more interesting circuits. Among the samples, we find some interesting circuits for the
“keep the heat” sentence pair (Example 6).

(6) Keeping the doors closed and the windows opened kept the apartment cool , because the
heat was let/kept out by the doors/windows

1This graph is omitted because it is basically empty.
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Figure 8.4: Circuits for the ”too much work”/”too little strength” example pair.
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Figure 8.5: Circuits for the “keep heat”/“let out heat” example pair. Left is the circuit of the “kept
heat” sentence, Right is the circuit created via the contrastive method
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We find that the model can successfully predict the right answer consistently, even only half
way along the training progress. By examining the base circuit as well as the contrastive circuit,
we find that the model effectively picks up semantic related context clues from the sentence. The
contrastive circuit especially highlights that the model select signals from many semantic related
words, using edges from different layers. For example, the model focuses on keywords like “kept”,
“open”, “heat” etc. Note that although these attention heads should be important for predicting the
final output correctly, they are not picked up by the base IFR algorithm.

To take a close look at the model’s behavior, we plot the attention and contribution map of a few
attention edges in Fig. 8.6. Here, the attention map is the regular attention weights of a particular
head, where the contribution map shows the importance value computed by Equation 8.1 instead.
Note that while the attention map exhibits regular behaviors such as diagonal and attending on the
first token, the contribution map captures the important information source more clearly. On the
left of Figure 8.6, the attention head at (L7, H26)2 shows contribution mainly on the two different
verbs “kept” and “let”, potentially used to capture the differences of the events. On the right, we
see that the head (L13, H25) shows contribution mainly focuses on the two different states “open”
and “close”. Potentially, the algorithm that solves this pair is to associate “kept” with “close” and
“let out” with “open”, then finds the closest previous entity (door/window). This mimics how
human understand the relations between events and states. The circuit in this example is slightly
more complex than the previous one, requiring the model to at least associate the related verbs.
But the model may still rely on simply using the previous word (or the closest entity) to resolve
the final entity.

“Scold and refund” Circuit. Example 4 is a more challenging one for the model. But from the
Jaccard similarity plot in the previous session, we observe that the circuit starts to become stable
at the end of the training. Would this be a signal that the model starts to pick up relevant semantic
information? We show in Figure 8.7 the circuits for it, the base circuit and the contrastive one.

The base circuit doesn’t highlight links to important contextual information, such as the names
of the people and the key event “burned”. However, the contrastive circuit shows multiple edges
to the key tokens, including the names, the key event “burned”. The algorithm to implement this
pair might be more complex and inspecting the graph doesn’t show a simple insight. Another
observation is that the internal activation that favors the the correct answer is also quite small, and
the two names have very similar output logit values. In other words, the model rank both answers
closely. We suspect the model prediction here can be very fragile. We replace one of the entity
with a more rare name (e.g., Cynthia), and we can successfully confused the model to always
output the more popular name.

Remarks on Circuit Analysis. From the two of the examples with non-trivial circuits, we find
that regular attribution algorithm does not capture the key context clues needed for the Winograd
Schemas. This is not surprising since the differences between the two sentences are very small,
hence their signal will be overwhelmed by the internal activation from the rest of the words. This
may also due to that our task setup does not require the model to focus on predicting the entity
correctly, a different task setup might present different observations.

2This notation means layer 7, head 26.
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Figure 8.6: Attention and Contribution Graph of selected attention edges from the “Keep the Heat”
contrastive circuit.
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Figure 8.7: Circuits for the “scolded/refund” example pair. Left is the circuit of the “scolded”
sentence, Right is the circuit created via the contrastive method

With the case study on circuits of the samples at different difficulty levels3, we observe that
the model is picking up interesting clues from the context. The contrastive method helps find
out the more context-relevant edges comparing to the base IFR method. We hope the proposed
methods can shed some light on this direction and help establish a feasible experimental setup.

8.5 Conclusion
In this chapter, we have explored how large language models (LLMs) solve Winograd Schemas,
providing insights into both their developmental trajectories and internal mechanisms. By leverag-
ing the special structure of the Winograd Schemas, we identified more robust pairs and conducted
contrastive analysis to reveal key circuit components. Our adoption of the Information Flow Route
algorithm allowed us to automatically discover circuits. By narrowing down these circuits using
contrastive methods and temporal analyses, we pinpointed specific pathways that contribute to the
model’s understanding of ambiguous anaphora problems.

Overall, our findings highlight both the successes and limitations of LLMs in handling
challenging linguistic phenomena. While the models show promise in solving certain tasks,
their performance on more complex and nuanced examples remains inconsistent. For example,

3More circuits can be found in Appendix B.3
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changing the names from common ones to rare ones may change the prediction. The analysis also
shows that the formation of robust algorithms in LLMs can be a gradual and unstable process,
especially for more difficult tasks.

Limitations. The setup used in this chapter is very specific, such as relying on the pair structure
of the Winograd Schema, hence cannot be easily generalized to other tasks. The restriction on the
data samples where the prediction word needs to be at the end further narrows the scope of our
analysis, reducing the applicability of our methods to a wider range of scenarios. While similar
methods should be applicable to bidrectional contextual models, the recent most powerful models
are all autoregressive ones.

Large Language Models also perform better with certain techniques, such as chain-of-thought
prompting and few-shot examples. Reasoning tasks typically benefit from these techniques.
However, in this chapter, we study the scenario without any additional prompting to avoid
introducing confounding factors. Task-specific circuits would be harder to analyze due to the
introduction of in-context learning heads [68, 156]. Nevertheless, we consider the inability to
analyze the model with its full potential unleashed a limitation.

The language models we study are also not the most performant ones to date, since the total
FLOPs of the model is far behind the best open sourced models. However, we choose the model
based on the availability of the full checkpoint sequence, and limitations on computation cost. We
believe analysis on larger models with the full sequences, such as LLM360 K2-65B [125].

Future Work. Future research should focus on in-depth circuit analysis to uncover detailed
interactions within models. This will involve not only using current methods but also exploring
new automatic techniques to address scalability issues, such as methods that can explain the
circuits automatically [19]. Understanding these detailed interactions can lead to better model
designs and improved interpretability of LLMs.

Moreover, expanding the scope of this study to include different datasets and tasks could
provide a broader understanding of LLMs’ capabilities and limitations. Investigating the effects of
different training regimes and architectures on the formation of circuits could also yield valuable
insights. For example, there are hypothesis that models trained with programming language
exhibit strong reasoning and reference ability. It would be very interesting to apply the circuit
methods on models that are stronger at coding.

In conclusion, we hope the methods and resources from this study can provide valuable
directions for future research in model interpretability and the development of more robust
language understanding systems. By continuing to explore and refine these approaches, we can
move closer to creating models that are not only powerful but also transparent and reliable in their
decision-making processes.

114



Chapter 9

Conclusion

This thesis has explored the domain of event semantics in natural language processing, focusing
on various event structures and their interactions within discourse. By addressing the challenges of
limited annotated data and complex event relationships, we have made progresses in understanding
and modeling event semantics.

Key Learnings. Throughout the course of this thesis, we have gained significant insights into
the complexities of event semantics and the methodologies required to effectively model and
understand them. We outline the key learnings from this thesis, highlighting the strengths and
limitation of the current research.

Supervised Structure Prediction: We developed algorithms to decode various event struc-
tures using expert-annotated datasets. These efforts revealed the rich properties and complex
relations of event mentions, such as coreference and subevents. Supervised learning approaches
were effective in structured prediction tasks like Event Detection, Event Coreference, Event
Sequencing, and Ellipsis Resolution. However, the limited scope and scale of annotated datasets
posed challenges to the generalizability of these models.

Scaling Up Data: This thesis shows promising evidence that scaling up the data can lead to
more generalizable findings in semantics, where:

1. Indirect Supervision: Using summarization as a proxy task, we created a large-scale event
salience dataset. This method demonstrated how indirect supervision signals can be har-
nessed to train robust models that capture intricate event-related phenomena. Additionally,
we observed that scaling up the data allows the model to uncover other event structures.

2. Crowdsourcing: By breaking down complex annotation tasks into simpler steps, we
successfully leveraged crowdsourcing to scale up data annotation. This approach not only
increased the volume of annotated data but also led to the discovery of novel partial identity
types, such as spatiotemporal continuity.

3. Language Models: Analyzing the performance of large language models on tasks like
the Winograd Schema Challenge provided insights into their capabilities and limitations.
Although LLMs exhibit significant advancements, they still have gaps in fully understanding
and resolving complex event semantics. Moreover, it remains challenging for humans to
interpret and analyze the diverse circuits identified by the algorithms.
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Future Work. The research conducted in this thesis has laid a foundation for understanding
and modeling event semantics in natural language processing. However, several areas deserve
further exploration. In this section, we outline a few directions for future work that can build on
the insights gained and address the limitations encountered in this thesis.

Enhanced Annotation Techniques: While crowdsourcing can help annotate complex tasks,
the scale of the final dataset can still be limited. A potential solution could be to use active learning
to guide crowdworkers and improve annotation efficiency and accuracy.

Expanding Indirect Supervision: One area of future research is to explore additional proxy
tasks and indirect supervision signals for other aspects of event semantics, such as event causality
and temporal relations. By integrating multiple sources of indirect supervision, researchers can
create more comprehensive and diverse datasets, which will enhance the robustness of models
that handle event semantics.

Interpretation Study of Language Models: Another crucial direction for future work is
the interpretation and mechanism analysis of large language models (LLMs). Resources like
the LLM360 project could be utilized to further investigate the specific pathways and compu-
tations that LLMs employ to resolve complex semantic tasks. Building on the circuit analysis
methods used in this thesis, researchers can develop frameworks that increase transparency and
explainability, ensuring that LLMs’ decisions are understandable and justifiable to end-users.

Dynamic Interpretability Study: We have studied how the model develops over time
by computing the similarities of the circuits formed at different stages. For future work, we
can examine the actual changes in the model’s weights. These changes can be considered as
accumulated gradients. By investigating these changes, we can gain further insights into how the
model’s abilities develop.

Final Remarks. We hope that this thesis and the insights gained from the research pave the
way for future advancements, bringing us closer to achieving a comprehensive and nuanced
understanding of events in natural language. We encourage researchers, especially those in NLP
and computational linguistics, to further explore how semantics can be represented by modern
sophisticated models.
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Appendix A

Appendix for Chapter 7

A.1 Ethical Considerations
In our dataset construction, we follow the standard norms for ethical research involving human
participants. We obtained IRB approval before starting our study. Our pilot study indicated that
each HIT takes ∼10-15 minutes; therefore, we set the price of individual HIT to be $2.3. Overall,
we paid a fair compensation of $10.9/hour (with median pay of $16.3/hour). For each HIT, the
crowd workers on Mechanical Turk have signed the informed consent form before starting the
task (see A.3 in Appendix). We provided clear instructions for using our annotation tool, both
within and through an instructional video. We provide positive and negative examples to illustrate
event coreference to the crowd workers (see A.2 in Appendix). Our dataset is limited to the
English language, specifically for text documents relating to Disasters and accidents. While we
have taken specific steps to improve the quality of our dataset, there might be incorrect or missing
coreference links. However, we believe that such incorrect/missing links will not create additional
risks to the models trained on our dataset.

A.2 Annotation Guidelines
To explain the task of cross-document event coreference to crowd workers on Mechanical Turk, we
present detailed example-based guidelines (Table A.3, Table A.4). Additionally, we provide crowd
workers with detailed instructions to our annotation interface (Table A.1, Table A.2). Workers
view these instructions before the start of each task and optionally during the task. In our HIT, we
also link to a 1-minute video tour of our annotation interface.

In our guidelines, we only present examples of full and null coreference. While we consider
membership a form of coreference (partial), we don’t train the crowd workers on full and partial
identity.
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A.3 MTurk Consent Form
A consent form is attached to the start of each HIT. Crowd workers are required to go through the
form and provide their consent before starting the task. Anonymized version of the consent form
is presented in Table A.5 and Table A.6. We anonymize the document for the conference review
process.

A.4 MTurk Qualification Test
To identify high-quality crowd workers, we design a qualification test and add it as an additional
requirement to solving our HITs.

A.4.1 Test Questions
In the qualification test on MTurk, we randomly select eight questions from a pool of 20 questions.
Table A.7 and Table A.8 list all the questions.

A.4.2 Test Format
Table A.9 presents the format of the qualification test used for screening crowd workers.

A.5 HIT Template
Table A.10 presents our HIT layout. Our layout is simple, and all of our annotations are collected
using our custom-designed annotation tool.

A.6 Follow-up Questions
Table A.11 lists the four follow-up questions. We present these questions for each coreference
link annotated by the crowd worker.
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Instructions for using the tool

This tool can be used to select events that are the same across the two given documents.

How to open instructions
(embedded GIF)
How to annotate one pair of events
(embedded GIF)
How to delete previous annotations
(embedded GIF)
How to proceed to the next event
(embedded GIF)

At any point during the task, you can click on the “View Instructions” button to read these
instructions.

What is this task about?
• Two related documents are presented side-by-side on the tool.
• A few words in both the documents are underlined and these are referred to as events.
• The task is to select events from the right document that are the same as the currently

highlighted event in the left document.
How should I solve this task?

• When you first start the task, make sure you read through both the left and right documents
to get an overall understanding of the two documents.

• At each step, an event is highlighted in a blue box on the left document (aka. target event).
Now, your goal is to identify underlined events from the right document that are the same
as the target event from the left document.

• Once you select an event from the right document (an annotation), you are presented a few
follow-up questions. Make sure you answer these questions to the best of your knowledge.

• If you change your mind while answering the questions, you can click the “Cancel” button
to remove your annotation.

• After you have identified all possible same events from the right document (if any), please
use the “Next event” button to move to the next target event on the left document.

Table A.1: Instructions as shown to the annotators on the interface.
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Instructions for using the tool (contd.)

FAQs

Q: I made a mistake and incorrectly marked two events as the same. How do I correct this?
If you are still answering the follow-up questions, you can just click on the “Cancel” button. If
you have already moved to the next target event, you can use the “Back” button to move back the
previously finished target events.

Q: I am not sure how to respond to the follow-up questions. How should I proceed?
The follow-up questions help us understand more about your decision that two events are the
same. It is important to note that the response to these questions need not always be “Yes”. In
fact, in many cases, you may not have enough information to respond with a definite “Yes” or
“No”, then please feel free to select “Not enough information”.

Q: How do I decide if two events are the same or different?
We understand that this decision is not always easy. To help you with this, we compiled a bunch
of examples. You can quickly glance through them using the “View Examples” button on the tool.

Q: How do I contact the authors of the task?
For any comments, feedback and/or suggestions, please use this form (XXXX). We strive to make
this a great experience for you.

Table A.2: Instructions as shown to the annotators on the interface. (contd)
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Examples

Goal of the Task
You will help us identify the same events from different documents.
What is an event?
People use text to describe what happen(ed) in the world. These are called events in text. We
often use verbs, sometimes even (pro)nouns, and adjectives as events. For example:
- It rained a lot yesterday.
- There was a fire last night.
- He got sick.

How do we know that the two events are the same?
In the following examples (1 to 5), two events are the same.

1. When two events refer to the same thing, they should be the same in terms of meaning, or
semantically identical.

• Taken as a whole, the evidence suggests that the plan to bomb the Boston Marathon
took shape over three months.

• Dzhokhar Tsarnaev apologized for suffering caused by the Boston Marathon bombing.

2. When two events are the same, one event may be the synonym for the other.
• A 16-year-old southern Utah boy was accused of bringing a homemade bomb to his

high school.
• The teen was charged Monday with attempted murder and use of a weapon of mass

desctuction, both first-degreen felonies.

3. Sometimes one event may be the pronoun (e.g.,it) or the anaphora (e.g., this, that) of the other,
when they are the same.

• Both drones carried explosives, and no YPF (“People’s Defence Units”) fighters were
injured in the incident.

• This would not be the first terrorist drone strike.

4. The same events do not have to take place at the same time. In the following example, one
event (“go”) would happen in the future, while the other (“went”) did occur.

• The couple had been planning to go to Paris for a long time.
• They finally went there last month.

5. Sometimes the same events are described from different perspectives. The following example
refers to the exchange of the gift from two perspectives.

• John gave a gift to Mary.
• Mary received a gift from John.

Table A.3: Examples for coreference and non-coreference, as shown to the annotators on the
interface.
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Examples (contd.)

In the following examples (6 to 8), two events are not the same.

6. When one event is a part of the other larger event, they are not the same.
• Following the trial of Mahammed Alameh, the first suspect in the bombing, investiga-

tors discovered a jumble of chemicals, chemistry implements and detonating materials.
• The explosion killed at least five people. (“bombing” refers to the entire process which

starts with making a bomb and ends with destructions, damages and injuries, while
“explosion” is a smaller event that occurs in that processes)

7. Two events are not the same even if they are the same semantically. The first example refers to
the general bomb-making process, while the second one indicates a particular bomb-making
event that took place in the garage.

• They obtained the online manual of bomb-making. (general bomb-making process)
• They made a bomb in the garage. (specific bomb-making event that happened in the

specific place)

8. When one event consists of, or is a member of the other event, they are not the same. The first
example refers to the specific death of a 44-year-old man, while the second one refers to the
deaths of 305 people.

• The government announced that a 44-year-old man died from the COVID. (death of a
44-year-old man)

• There are more than 14,300 confirmed COVID cases, and 305 people have died.
(deaths of 305 people)

Table A.4: Examples for coreference and non-coreference, as shown to the annotators on the
interface. (contd)
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Consent From

This task is part of a research study conducted by XXX at XXX and is funded by XXX.

Purpose
The goal of this study is to collect datasets of coreference-labeled pairs sampled from public online news
articles through the help of crowd workers.

Procedures
You will be directed to a website implemented by the research team to complete the task. You will be asked
to read upto 3 pairs of articles. For each pair of articles, you will need to label pieces of text that refer to
the same event, and answer additional questions about your labeling. Labeling one pair of articles whose
length sums up to 40 sentences is expected to take around 15 minutes.

Participant Requirements
Participation in this study is limited to individuals age 18 and older, and native English speakers.

Risks
The risks and discomfort associated with participation in this study are no greater than those ordinarily
encountered in daily life or during other online activities.

Benefits
There may be no personal benefit from your participation in the study but the knowledge received may be
of value to humanity.

Compensation & Costs
For this task, you will receive between $2 to $3 for annotating each pair of articles. The exact reward for
each pair depends on the length of corresponding articles. You will not be compensated if you provide
annotations of poor quality.
There will be no cost to you if you participate in this study.

Future Use of Information and/or Bio-Specimens
In the future, once we have removed all identifiable information from your data (information or bio-
specimens), we may use the data for our future research studies, or we may distribute the data to other
researchers for their research studies. We would do this without getting additional informed consent from
you (or your legally authorized representative). Sharing of data with other researchers will only be done in
such a manner that you will not be identified.

Confidentiality
The data captured for the research does not include any personally identifiable information about you
except your IP address and Mechanical Turk worker ID.
By participating in this research, you understand and agree that XXX may be required to disclose your
consent form, data and other personally identifiable information as required by law, regulation, subpoena or
court order. Otherwise, your confidentiality will be maintained in the following manner:

Table A.5: Consent Form attached to each of our HITs. We anonymize the document for the
conference review process.
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Consent From (contd.)

Confidentiality (contd.)
Your data and consent form will be kept separate. Your consent form will be stored in a secure
location on XXX property and will not be disclosed to third parties. By participating, you
understand and agree that the data and information gathered during this study may be used by
XXX and published and/or disclosed by XXX to others outside of XXX. However, your name,
address, contact information and other direct personal identifiers will not be mentioned in any such
publication or dissemination of the research data and/or results by XXX. Note that per regulation
all research data must be kept for a minimum of 3 years.
The Federal government offices that oversee the protection of human subjects in research will
have access to research records to ensure protection of research subjects.

Right to Ask Questions & Contact Information
If you have any questions about this study, you should feel free to ask them by contacting the
Principal Investigator now at XXX, XXX, or by phone at XXX, or via email at XXX. If you have
questions later, desire additional information, or wish to withdraw your participation please contact
the Principal Investigator by mail, phone or e-mail in accordance with the contact information
listed above.
If you have questions pertaining to your rights as a research participant; or to report concerns to
this study, you should contact the XXX at XXX. Email: XXX. Phone: XXX or XXX.

Voluntary Participation
Your participation in this research is voluntary. You may discontinue participation at any time
during the research activity. You may print a copy of this consent form for your records.

I am age 18 or older. Yes No

I have read and understand the information above. Yes No

I want to participate in this research and continue with the task. Yes No

Table A.6: Consent Form attached to each of our HITs. We anonymize the document for the
conference review process. (contd)
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# Text Answer Type

1 A 500lb bomb packed in the Cavalier is detonated with a remote trigger. The explosion
tears through Market Street.

yes Synonym

2 The death toll of the Omagh bomb blast in Northern Ireland has risen to 29 following
the death of a man in hospital.

no Member

3 Ahmed al-Mughassil was arrested in Beirut and transferred to Riyadh, the Saudi capital,
according to the Saudi newspaper Asharq Alawsat. The Saudi Interior Ministry and
Lebanese authorities had no immediate comment on the capture.

yes Synonym

4 The blast didn’t cause the destruction its planners intended. But it opened up a multi-
story crater in the building, injured more than 1,000 people and ultimately killed six.

no Member

5 March 4, 1998 - Four defendants, Salameh, Ayyad, Abouhalima, and Ajaj, are convicted.
They are sentenced to prison terms of 240 years each. In 1998, the sentences were
vacated. In 1999, the men were re-sentenced to terms of more than 100 years.

no Unrelated

6 Perhaps the only early clues to emerge on an early quiet second day of the Boston
Marathon bombing investigation - from the ATF and the FBI and the Boston police,
from anonymous law enforcement officials and doctors pulling ball bearings out of
victims limbs - concern the Boston bombs themselves. A similar scene played out in the
Boston suburb of Newton, where a bomb used a robot to investigate a suspicious object
that turned out to be a circuit board.

no Member

7 As of Tuesday morning, jurors began reviewing evidence and witness testimony, which
will play a role in helping them divide Dzhokhar Tsarnaev’s guilt on each of the 30
charges he faces. A key issue for jurors - both in the guilt phase and later the penalty
phase if Tsarnaev is convicted - will be whether the jurors see Tsarnaev as an equal
partner with his old brother, Tamerian Tsarnaev, in the Boston Marathon bombing and
the violent events that followed.

yes Synonym

8 Though building the bomb was relatively easy, the experts say, it was not by any means
free of danger. The bulkiest part of the bomb, they say, was extremely stable and could
only have been touched off with a tremendous kick, like that provided by nitroglycerine.
Making the nitroglycerin, blending some of the chemicals, was the trickiest part of the
process.

yes Synonym

9 An ongoing Somali offensive, backed by the U.S. and an African Union peacekeeping
force has recaptured territory from al Shabaab in south-central Somalia, but has not
eliminated al Shabaab’s ability to conduct VBIED attacks. U.S.-backed Somali ground
operations along with improved counter-VBIED capabilities among Somali forces may
have slightly decreased VBIED attacks between November 2017 and January 2018.

yes Synonym

10 According to the United Nations, more than 2.3 million Venezuelans have left their
country in recent years. Increasingly they are leaving with no money and are traveling
on foot across South American countries like Colombia, Ecuador and Peru, in dangerous
journeys that can take several weeks.

no Member

Table A.7: Examples used with the qualification test on Mechanical Turk. For each paragraph
with two highlighted events, we ask the question, “In the above paragraph, are the highlighted
events the same?”. The crowd worker has to select one of the “Yes” or “No” options.
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# Text Answer Type

11 Spain’s King Juan Coarlos and Queen Sofia traveled to their summer residence in
Majorca Saturday just two days after a bombing blamed on Basuqe separatists killed
two policemen on the resort island.

no Member

12 Yahoo Inc. is preparing to lay off between 600 and 700 workers in the latest shakeup
triggered by the Internet company lackluster growth. Employees could be notified of the
job cuts as early as Tuesday, according to a person familiar with Yahoo’s plans.

yes Synonym

13 A man shot and killed by police officers during a burglary here early Monday was
identified by law enforcement authorities as the suspect in a string of five shooting
deaths in South Carolina over the last 10 days. Sheriff Bill Blanton of Cherokee Country,
S.C., where the killings took place, confirmed Monday evening that the authorities had
been seeking the man killed in the burglary, Patrick T. Burris, a felon with a long record
who had served seven years in prison and was paroled in April.

yes Synonym

14 Staff Sgt. Robert Bales offered a tearful apology Thursday for gunning down 16 unarmed
Afghan civilians inside their homes but said he still could not explain why he had carried
out one of the worst U.S. war crimes in years. The unsworn statement from Bales, 40,
came on the third day of hearing to determine whether he should ever be eligible for
parole in the March 2012 Massacre.

yes Synonym

15 In January two men were hanged after being convicted of involvement in protests, and
in May, four Iranian Kurds and another man accused of terrorism were executed.

no Unrelated

16 The Dow Corning Corporation filed for bankruptcy protection in a Federal court in Bay
City, Michigan. Dow Corning said that seeking the protection of the bankruptcy court
was the only way it could devise an enforceable plan to deal with the claims against it.

no Realis

17 The UN report accused both Israel and Palestinian armed groups of commiting war
crimes during the three-week war in Gaza that erupted on December 27, killing some
1,400 Palestinians and 13 Israelis.

no Realis

18 A judge has ordered the surviving children of the Rev. Martin Luther King Jr. and
Coretta Scott King to hold a shareholder’s meeting to discuss their father’s estate. The
three siblings are the sole shareholders, directors and officers of a company that manages
their father’s intellectual property, but they have not met for an annual shareholder’s
meeting since 2004.

no Realis

19 The first attack was a failure, but if the report is accurate, then it signals a dangerous new
terror threat. The report showed pictures of the remains of a homemade attack drone.

no Realis

20 A key issue for jurors - both in the guilt phase and later in the penalty phase if Tsarnaev
is convicted - will be whether the jurors see Tsarnaev as an equal partner with his older
brother, Tamerlan Tsarnaev, in the Boston Marathon bombing and the violent events
that followed. Taken as a whole, the evidence suggests that the plan to bomb the Boston
Marathon took shape over three months.

yes Realis

Table A.8: Examples used with the qualification test on Mechanical Turk. For each paragraph
with two highlighted events, we ask the question, “In the above paragraph, are the highlighted
events the same?”. The crowd worker has to select one of the “Yes” or “No” options. (contd)
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Screening Test

In this test, we ask you to identify whether two events (highlighted in each paragraph) indicate
the same thing or not. Read each paragraph carefully and answer the question by selecting the
appropriate option, Yes or No.

In total, you are presented with 8 questions and the time limit for this test is 20 minutes.

Note: It is important you do this test on your own because our HITs are similar to the questions
presented in this test. For your reference, we provide five examples below,

He died of injuries from the accident. His friends were all saddened to hear his death.
Question: In the above paragraph, are the highlighted events the same?
Answer: Yes (both words, died and death indicate the person’s death)

The suspect was shot and killed in the raid by the armed officers.
Question: In the above paragraph, are the highlighted events the same?
Answer: No (shot happened during the raid)

The couple had been planning to go to Paris for a long time. They finally went there last month.
Question: In the above paragraph, are the highlighted events the same?
Answer: Yes (The two events do not have to take place at the same time. Here, go would happen
in the future, and went did occur.)

John gave a gift to Mary. Mary received a gift from John.
Question: In the above paragraph, are the highlighted events the same?
Answer: Yes (Same events described from different perspectives.)

Following the trial of Mahammed Alameh, the first suspect in the bombing, investigators discov-
ered a jumble of chemicals, chemistry implements and detonating materials. The explosion killed
at least five people.
Question: In the above paragraph, are the highlighted events the same?
Answer: No (One event is part of the other larger event. bombing refers to the entire process which
starts with making a bomb and ends with destructions, damages and injuries, while explosion is a
smaller event that occurs in that processes.)

Q1. ....
Yes No

Q2. ....
Yes No

...

Table A.9: The template used in the qualification test to screen annotators. In addition to
instructions and examples, we present eight yes/no questions.
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Annotating Event Coreference in News Articles

In this HIT, you will be using our tool to perform the task. For a short tutorial on using our
interface, see this 1 minute video: XXX. This HIT contains the following two steps,

• Visit the URL provided below to perform the task.
• At the end of the task, you will be provided a secret code. To submit this HIT, copy the

secret code and paste it into the box provided below. Note that the secret code is unique for
each task.

Link to the task: XXX

Fill in the secret code

Paste the secret code provided at the end of the task into the text box (*required)

Table A.10: The template used for each Human Intelligence Task (HIT) on Mechanical Turk.

Place: Do you think the two events happen at the same place?

Exactly the same The places overlap Not at all Cannot determine

Time: Do you think the two events happen at the same time?

Exactly the same They overlap in time Not at all Cannot determine

Participants: Do you think the two events have the same participants?

Exactly the same They share some participants Not at all Cannot determine

Inclusion: Do you think one of the events is part of the other?

Yes, the left event is part of right one Yes, the right event is part of left one
No, they are exactly the same Cannot determine

Table A.11: Follow-up questions used for each annotated coreference link.
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Appendix B

Appendix for Chapter 8

B.1 LLM360 Details
The recent emergence of accessible, highly capable LLMs such as LLaMA [195, 196], Fal-
con [161], and Mistral [106] has allowed researchers to easily obtain, customize, and deploy
LLMs for diverse applications. However, many open-source LLMs restrict visibility and access
to their training processes, limiting the broader AI research community’s ability to study and
innovate upon these models. To address this, we develop the LLM360 project, emphasizing open
research by releasing intermediate checkpoints, training details, and artifacts.

AMBER

Subset Tokens

Arxiv 30B

Book 29B

C4 198B

Refined-Web 665B

StarCoder 292B

StackExchange 22B

Wikipedia 24B

Total 1.26T

Table B.1: Data mixture in AMBER.

Model Configurations. In this thesis, we used a 7B pa-
rameter model named AMBER trained on approximately
1.26 trillion tokens (see Table B.2 for the dataset break-
down). The model shares architectural similarities with
LLaMA1 7B, including model dimensions, use of RM-
SNorm [222], and rotary positional embeddings (RoPE)
at each layer of the network [190], a summary of model
specification is in Table B.2.

Model Checkpoints. LLM360 models are released
with all intermediate checkpoints saved during training,
including model weights and optimizer states. These
checkpoints enable continued training from various start-
ing points and facilitate post-training research.

Pre-training Infrastructure. AMBER is trained on a
GPU cluster of 56 DGX A100 nodes, each equipped
with 4× 80GB A100 GPUs. Each GPU is connected
with 4 links NVLink. Cross node connection setting is 2
port 200 Gb/sec (4× HDR) InfiniBand. The throughput
we achieved with our distributed training framework is
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Number Parameters 6.7B Activation SwiGLU

Hidden Size 4096 Sequence Length 2048

Intermediate Size (in MLPs) 11008 Vocabulary Size 32000

Number of Attention Heads 32 Position Embedding Rotary

Number of Hidden Layers 32 QK Dot Product Scaling QKT
√
d

LR Schedule Cosine Decay Warmup Steps 2000

Normalization RMSNorm Batch Size 2240

Table B.2: Model architecture for AMBER

around 582.4k tokens per second. Our pretraining framework is lit-llama1 developed based on
PyTorch Lightning. We used mixed-precision during pre-training with BF16 for activations and
gradients and FP32 for model weights [139].
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Figure B.1: The training loss curves of AMBER

Metrics. The LLM360 project also provides access to detailed logs and intermediate metrics,
including system statistics, training logs, and evaluation metrics.

B.2 Formulation of the Information Flow Ruote Algorithm
In this appendix, we describe the Information Flow Route algorithm of [77] briefly. The nodes
are token representations, and the main edges in a Transformer are residual edges, and edges in

1https://github.com/Lightning-AI/lit-llama
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the attention and Feed-Forward Networks (FFN). We describe the edge computation for both
Feed-Forward Network (FFN) and attention blocks. The definition of residual streams are folded
into the attention blocks. The equations are adopted from [77], please refer to the original paper
for detailed explanations.

Notation-wise, in a graph, xlA
pos and xl

pos are representations of the token at position pos after
the attention block in layer l or the entire layer, respectively. Each xl−1

1 , ..., xl−1
pos is connected to

xlA
pos via attention edges (and via a residual stream edge from xl−1

pos to xlA
pos), x

lA
pos is connected to

xl
pos via two edges: the FFN output and the residual stream. The edge representations computation

will be presented next, but most layer notation l will be dropped for clarity.

B.2.1 Feed-Forward Network (FFN) Edges
For the FFN blocks, edge vectors are defined as follows:

xl
pos = xlA

pos + FFNl(x
lA
pos),

where the terms correspond to the edges of the residual connection and FFN, respectively.

B.2.2 Attention Edges
In order to capture the detailed impact of each residual stream (token) to the target, we decompose
the multi-head attention by the heads and tokens. The output of an attention block can be
decomposed into a sum of edges, each representing a connection on top of each residual streams
for each token position.

Decomposing Attention Heads. for attention head h, the decomposition is given by:

Attnh(x≤pos) =
∑
j≤pos

αh
pos,jf

h(xj), (B.1)

where fh(xj) = xjLW
h
OV , with W h

OV = W h
VW

h
O being the combined values and output matrix

for head h, αh
pos,j are scalar attention weights, and L represents the linearized layer normalization

(see below). The W h
OV term compute the output of the specific head h. This terms comes from

decomposing the MHA computation: we split the output matrix WO into head-specific parts W h
O,

and combine them with the head’s values matrix: W h
OV = W h

VW
h
O.

Along an attention head, each representation xj is linearly transformed into fh(xj) = xjLW
h
OV

and multiplied by a scalar attention weight αh
pos,j . This gives the ”raw output” emitted by each

input vector xj when treating attention weights as prediction-specific constants. We effectively
consider information flows through attention heads via independent channels αh

pos,jf
h(xj) that

converge in the next residual stream state. Each of these channels can be considered as a sub-edge
of the attention head.
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Linearized Layer Normalizaiton. Given an input vector x, the layer normalization (LN) is
computed as:

LN(x) =
x− µ(x)

σ(x)
⊙ γ + β (B.2)

where µ(x) and σ(x) denote the mean and standard deviation of x, respectively. The parameters
γ ∈ Rd and β ∈ Rd are learnable scaling and bias factors applied element-wise.

If we assume σ(x) is constant, then the layer normalization can be simplified to a linear
transformation:

LN(x) = xL+ β (B.3)

Here, L ∈ Rd×d is a matrix that effectively encapsulates the centering, normalization, and scaling
operations.

L :=
1

σ(x)


γ1 0 · · · 0
0 γ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · γn




n−1
n
− 1

n
· · · − 1

n

− 1
n

n−1
n
· · · − 1

n

· · · · · · · · · · · ·
− 1

n
− 1

n
· · · n−1

n


The linear mapping on the right side of the equation subtracts the mean from the input vector,

resulting in x′ = x−µ(x). The matrix on the left performs the element-wise (Hadamard) product
with the layer normalization weights, represented as x′ ⊙ γ.

Attention Block Contribution with Subedges and Residual Stream. We compute the im-
portance (contribution) of each of the sub-edges and aggregate across heads the capacities of
those sub-edges connecting the same pair of nodes,

∑H
h ehpos,j , and the importance of the residual

connection for the current token, eres attn
pos . Formally, attention edge importances are computed as

eattn
pos,j =

{∑H
h ehpos,j if j ̸= pos∑H
h ehpos,j + eres attn

pos if j = pos
(B.4)

where ehpos,j = importance(αh
pos,jf

h(xj),x
A
pos) and eres attn

pos = importance(xpos,x
A
pos) respectively.

B.3 More Circuit Graphs
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Figure B.2: Contrastive Circuit Graphs for two Winograd pairs. Left: Sarah was a much better
surgeon than Maria, so the (harder/easier) cases always went to (Sarah/Maria). Right: Keeping
the doors closed and the windows opened kept the apartment cool, because the heat was (kept/let
out) by the (door/window)
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Figure B.3: Contrastive Circuit Graphs for two Winograd pairs. Left: In the hotel laundry room,
Emma burned Mary’s shirt while ironing it, so the manager (scolded/refunded) (Emma/Mary).
Right: They had to eat a lot to gain the strength they had lost and be able to work, they had too
(much/little) (work/strength)
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Figure B.4: Base IFR Circuit for the Winograd pair: Sarah was a much better surgeon than Maria,
so the (harder/easier) cases always went to (Sarah/Maria).
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Figure B.5: Base IFR Circuit for the Winograd pair: The gas was not smelling out of the tank but
out of the hose because the (leaky/sealed) (tank/hose).
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Figure B.6: Base IFR Circuit for the Winograd pair: Keeping the doors closed and the windows
opened kept the apartment cool, because the heat was (let out/kept) by the (doors/windows).
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Figure B.7: Base IFR Circuit for the Winograd pair: In the hotel laundry room, Emma burned
Mary’s shirt while ironing it, so the manager (refunded/scolded) (Emma/Mary).
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Figure B.8: Base IFR Circuit for the Winograd pair: They had to eat a lot to gain the strength they
had lost and be able to work, they had too (much/little) (work/strength)
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